Effects of Different Ions on the Corrosion Behavior of SM 80SS Tubing Steel in CO2/H2S Containing Aqueous Solution

2013 ◽  
Vol 734-737 ◽  
pp. 1367-1373
Author(s):  
Guan Fa Lin ◽  
Xun Chang Dong ◽  
Shi Dong Zhu ◽  
Zhen Quan Bai

As an attempt to contribute to the understanding of the corrosion processes of anti-sulfur steel in CO2and H2S containing environment with different species, the corrosion behavior of SM 80SS tubing steel immersed in CO2and H2S containing solution was analyzed in this work. To determine the corrosion behavior of SM80SS steel, the linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) techniques were used, as well as weight loss test and surface analysis. The results showed that the presence of Cl-quickened the anodic dissolution processes and rapidly increased the corrosion rate of SM 80SS steel, and that the addition of Ca2+and Mg2+reduced corrosion rate. The corrosion processes of SM 80SS steel were controlled by the electrochemical reaction in the initial period and then converted to be controlled by electrochemical and activation reaction with increasing Cl-. Keywords: SM 80SS tubing steel; CO2/H2S corrosion; EIS; Chloride; Ca2++ Mg2+

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. Ademar ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Uruchurtu ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
...  

The effect of 2.5 at.% Cr, Ti, and Ag on the corrosion behavior of Fe40Al intermetallic alloy in KCl-ZnCl2(1 : 1 M) at 670°C has been evaluated by using electrochemical techniques. Techniques included potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) measurements. Results have shown that additions of both Cr and Ti were beneficial to the alloy, since they decreased its corrosion rate, whereas additions of Ag was detrimental, since its additions increased the corrosion rate, although the alloy was passivated by adding Ag or Cr. The best corrosion performance was obtained with the addition of Cr, whereas the highest corrosion rate was obtained by adding Ag. This is explained in terms of the stability of the corrosion products formed film.


2014 ◽  
Vol 61 (6) ◽  
pp. 395-401
Author(s):  
Liu Kecheng ◽  
Liu Xia ◽  
Long Xiao ◽  
Wei Jiaqiang ◽  
Hu Mengsha ◽  
...  

Purpose – The purpose of this study is to explore the influence of the sulfate reducing bacteria (SRB) on the corrosion of cupronickel. Design/methodology/approach – Tests monitoring the change in free corrosion potential, linear polarization resistance and electrochemical impedance spectroscopy and examination using the scanning electron microscope and energy spectrum analysis were used to investigate the corrosion behavior of cupronickel in blank medium and in media inoculated with SRB to explore the influence of the SRB on the corrosion behavior of cupronickel alloy. Findings – The results show that SRB can destroy the surface oxide film of cupronickel and significantly reduce the free corrosion potential and polarization resistance of the cupronickel, causing the cupronickel to corrode significantly. Originality/value – SRB are widely found in the water supply system and is one of the important factors inducing microbial corrosion. This paper verified that SRB promote cupronickel corrosion and explored the influence and mechanism of attack.


CORROSION ◽  
10.5006/2558 ◽  
2017 ◽  
Vol 74 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Luiza Esteves ◽  
Mônica M.A.M. Schvartzman ◽  
Wagner Reis da Costa Campos ◽  
Vanessa F.C. Lins

Specimens of lean duplex and duplex stainless steel were exposed at 200°C in industrial white liquor from a Brazilian kraft mill using an autoclave to simulate the same conditions of digester processing. Tafel extrapolation method and weight loss were used to evaluate corrosion behavior of duplex steel in white liquor. The higher alloy steel, although presenting a lower corrosion rate than the lean duplex, presents a more severe selective attack on ferrite, at 200°C and 1.8 MPa, after Tafel extrapolation method in industrial white liquor.


2014 ◽  
Vol 811 ◽  
pp. 23-27 ◽  
Author(s):  
Jan Stoulil ◽  
Tomáš Pfeifer ◽  
Alena Michalcová ◽  
Ivo Marek

This work is focused on lifetime prediction of metallic nanoparticles in heat exchange nanofluids. Copper, nickel and iron nanoparticles were studied in 40 wt.% aqueous solution of potassium formate and propylene glycol. Materials were observed by means of mass loss exposure tests, linear polarization resistance and potentiodynamic measurements. Potassium formate solution is not suitable bearing liquid for metallic nanoparticles. Propylyne glycol seems promising, however additional corrosion prevention needs to be applied.


Author(s):  
Naoya Kasai ◽  
So Soon Park ◽  
Kentaro Utatsu ◽  
Kazuyoshi Sekine ◽  
Shigeo Kitsukawa ◽  
...  

An AE method is an effective technique that can inspect corrosion damage of tank bottom plates to prevent leakage accidents of oil storage tanks. However, a correlation between AE signals and the corrosion behavior for bottom plates is not fully clarified. In this study, the authors considered that the corrosion regions in bottom plates become a strong acid environment by chloride ions as shown our previous work. The correlation between the AE signals and the corrosion behavior with a potentiostat for test pieces was examined in the environment. The polarization resistance was measured with an AC impedance method using a frequency response analyzer. It was clear that the polarization resistance indicated the corrosion rate for a test pieces in the experiments. While measuring the AE signals, the corrosion rate was monitored with a test piece. As a result, the AE signal showed the good correlation with the corrosion rates of the test pieces.


2011 ◽  
Vol 335-336 ◽  
pp. 779-782
Author(s):  
Shi Quan He ◽  
Hui Zhong

Corrosion behaviour of hot-dip galvanized steel in 5% NaCl aqueous solution was studied by electrochemical impedance spectrum (EIS) technique. The results revealed that corrosion behaviour of hot-dip galvanized steel has a great relationship with immersion time. With the increase of immersion time, corrosion products are constantly changing, and the impedance of corrosion products are different. Parameters fitted by equivalent circuit show that the impedance of corrosion products increased at first, then decreased.


2011 ◽  
Vol 287-290 ◽  
pp. 2332-2338
Author(s):  
Jian Miao ◽  
Shi Dong Zhu ◽  
Qiang Wang ◽  
Yao Rong Feng ◽  
Xin Wei Zhao

The properties of corrosion scale on P110 carbon steel in the saltwater solution containing CO2 have been examined by electrochemical impedance spectroscope (EIS). The change of electrode reaction process on the corrosion scale has been discussed in the present work. It is found that the corrosion rate decreases with the increasing of the experimental time, and the reducing tendency of corrosion rate becomes low as the experimental time was 72 hours, EIS results indicate that the polarization resistance increases gradually and the electrode reaction is controlled by both diffusion and activation in comparison with activation only at the beginning.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. Salinas ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
M. A. Espinoza-Medina

The hot corrosion behavior of Fe40Al intermetallic alloyed with Ag, Cu, Li, and Ni (1–5 at.%) in NaCl-KCl (1 : 1 M) at 670°C, typical of waste gasification environments, has been evaluated by using polarization curves and weight loss techniques and compared with a 304-type stainless steel. Both gravimetric and electrochemical techniques showed that all different Fe40Al-base alloys have a much higher corrosion resistance than that for stainless steel. Among the different Fe40Al-based alloys, the corrosion rate was very similar among each other, but it was evident that the addition of Li decreased their corrosion rate whereas all the other elements increased it. Results have been explained in terms of the formation and stability of an external, protective Al2O3layer.


2016 ◽  
Vol 835 ◽  
pp. 115-120
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

All materials which are intended to have in contact with food and other commodities produced or processed for human consumption are called food contact materials (FCM’s). Stainless steel (SS) – a widely known metallic FCM is used mainly in processing equipment, containers and household utensils. It is known for having numerous industrial and domestic applications worldwide due to its special characteristics of having notable corrosion resistance. However, this corrosion resistance is not all-encompassing since SS may still undergo degradation when subjected to a specific corrosion-inducing environment. SS may be classified according to its microstructure. If the atoms which make up the SS can be viewed as having a face-centered cubic structure, then the alloy is said to be austenitic. This SS grades include the conventional 300-series and the newly-developed 200-series. The former has superior corrosion resistance while the latter is far cheaper. In this study, the corrosion behavior of AISI 202 SS in two different levels of dissolved oxygen (O2) and three acid concentrations was investigated using electrochemical techniques, namely, open-circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS). As the concentration of citric acid is increased, the measured OCP values of the alloy decreased and the polarization resistance (Rp) decreased, indicating decrease in alloy stability and decline in the corrosion resistance, respectively. With regards to effects of dissolved O2, results revealed that increasing the level of dissolved O2 has consequently increased the polarization resistance and shifted the OCP to more positive values. All the generated Nyquist plots exhibited a depressed capacitive loops indicating that corrosion in the designated solution occurred with charge transfer as the rate-determining step.


Sign in / Sign up

Export Citation Format

Share Document