Electrochemical Investigation of the Effects of Acid Concentration and Dissolved Oxygen on the Corrosion Behavior of Austenitic Low-Nickel Stainless Steels in Citric Acid

2016 ◽  
Vol 835 ◽  
pp. 115-120
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

All materials which are intended to have in contact with food and other commodities produced or processed for human consumption are called food contact materials (FCM’s). Stainless steel (SS) – a widely known metallic FCM is used mainly in processing equipment, containers and household utensils. It is known for having numerous industrial and domestic applications worldwide due to its special characteristics of having notable corrosion resistance. However, this corrosion resistance is not all-encompassing since SS may still undergo degradation when subjected to a specific corrosion-inducing environment. SS may be classified according to its microstructure. If the atoms which make up the SS can be viewed as having a face-centered cubic structure, then the alloy is said to be austenitic. This SS grades include the conventional 300-series and the newly-developed 200-series. The former has superior corrosion resistance while the latter is far cheaper. In this study, the corrosion behavior of AISI 202 SS in two different levels of dissolved oxygen (O2) and three acid concentrations was investigated using electrochemical techniques, namely, open-circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS). As the concentration of citric acid is increased, the measured OCP values of the alloy decreased and the polarization resistance (Rp) decreased, indicating decrease in alloy stability and decline in the corrosion resistance, respectively. With regards to effects of dissolved O2, results revealed that increasing the level of dissolved O2 has consequently increased the polarization resistance and shifted the OCP to more positive values. All the generated Nyquist plots exhibited a depressed capacitive loops indicating that corrosion in the designated solution occurred with charge transfer as the rate-determining step.

2016 ◽  
Vol 835 ◽  
pp. 131-135 ◽  
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

Stainless steel (SS) is one of the most commonly used metallic food contact materials. It may be classified based on its microstructure whether ferritic, austenitic, martensitic, duplex or precipitation hardened. Austenitic SS, among mentioned grades, has the largest contribution to market due to its numerous industrial and domestic applications. In this study, the corrosion behavior of AISI 202 SS – a cheaper grade of stainless steel, in three different solution temperatures of citric acid was investigated using different electrochemical techniques such as open-circuit potential (OCP) measurements, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results were compared to that obtained from conventional AISI 304 SS. OCP, polarization and impedance measurements agreed that AISI 202 SS has comparable resistance to that of AISI 304 SS in citric acid at ambient temperature and at 50 °C. At 70 °C, results of OCP measurements suggest that AISI 304 SS exhibited greater performance as indicated by more positive OCP values in the designated solution. EIS results indicate that the two alloys have identical corrosion resistance even at 70 °C as indicated by their comparable polarization resistance (Rp). The corrosion mechanism in both alloys is charge-transfer controlled as indicated by depressed semi-circular appearance of the generated Nyquist plots. The values of corrosion current densities (icorr) extracted from polarization curves indicate that the initial corrosion rates were higher in AISI 304 than AISI 202 SS suggesting that formation of more protective film may have occurred on the former alloy.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. Fattah-alhosseini ◽  
M. Ranjbaran ◽  
S. Vajdi Vahid

Corrosion behavior of A356-10 vol.% SiC composites cast by gravity and squeeze casting is evaluated. For this purpose, prepared samples were immersed in H2SO4solution for 2 hrs. at open circuit potential. Tafel polarization and electrochemical impedance spectroscopy (EIS) were carried out to study the corrosion resistance of composites. The results showed that corrosion resistance of composites cast by squeeze casting is higher than that of the gravity cast composites. The micrographs of scanning electron microscope (SEM) clearly showed the squeeze casting composites exhibit a good dispersion/matrix interface when compared with composites produced by gravity casting.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carmen Marina Garcia-Falcon ◽  
Tomas Gil-Lopez ◽  
Amparo Verdu-Vazquez ◽  
Julia Claudia Mirza-Rosca

Purpose This paper aims to analyze the corrosion behavior in Ringer solution of six commercially used Ni-based alloys that are present and commonly used as metallic biomaterials. Design/methodology/approach The specimens were received in the form of cylindrical ingots and were cut to get five samples of each brand with a cylindrical shape of 2 mm height to conduct the study. In this scientific research, the following techniques were used: open circuit potential, potentiodynamic polarization studies, and electrochemical impedance spectroscopy. Findings The study findings revealed the passivation tendency of the different specimens. Additionally, when the materials were compared, it was discovered that the decisive factor for high corrosion resistance was the chromium concentration. However, with similar chromium content, the stronger concentration in molybdenum increased the resistance. According to the results obtained in this investigation, the biological safety of the dental materials studied in Ringer solution was considered very high for specimens 1 and 2, and adequate for the other samples. Originality/value Metal alloys used as biomaterials in contact with the human body should be deeply investigated to make sure they are biocompatible and do not cause any harm. The corrosion resistance of an alloy is the most important characteristic for its biological safety, as all problems arise because of the corrosion process. There is scarce investigation in these Ni-based dental biomaterials, and none found in these commercially used dental materials in Ringer solution.


2016 ◽  
Vol 710 ◽  
pp. 216-221 ◽  
Author(s):  
Wagner Izaltino Alves Dos Santos ◽  
Isolda Costa ◽  
Célia Regina Tomachuk

New treatments for replacement of chromate require lower toxicity and corrosion protection. This study aims to investigate the influence of the combination of a Ce conversion coating (CCCe) with glycol molecules on the corrosion resistance of the AA2024-T3 clad (AA1230). The corrosion resistance of surface treated and untreated samples was evaluated by electrochemical techniques (electrochemical impedance spectroscopy, polarization tests and open circuit potential). These tests were complemented by salt spray tests to accelerate the corrosive effects of weathering. The surfaces were analyzed after corrosion tests by scanning electron microscopy with X-ray energy dispersive detector (SEM - EDX). The results of the CCCe samples in combination with glycol were compared with that of the surface with chromate layer and the results showed that the CCCe treatment is a candidate for replacement of chromating with the advantage that it does not generate toxic residues. The self-healing capacity of the new treatment tested was indicated by the increased formation of corrosion products deposition on top of Fe rich intermetallis in the AA1230 clad with time of exposure to the electrolyte.


2011 ◽  
Vol 686 ◽  
pp. 21-25
Author(s):  
Xian Long Cao ◽  
Fu Sheng Pan ◽  
Hong Da Deng ◽  
Wei Cai

This present work investigated the corrosion behavior of AZ31 magnesium alloy substrates pre-treated with bis-[triethoxysilylpropyl] tetrasulfide silane modified with cerium nitrate. The corrosion behavior of the pre-treated substrates in 0.005M sodium chloride solutions was assessed by potentiodynamic polarization, open circuit potential and electrochemical impedance spectroscopy (EIS). The results showed that the silane pre-treatments improved the corrosion resistance of the AZ31 magnesium alloy substrates in the presence of chloride ions. Especially the addition of cerium nitrate played an important role in reducing the corrosion activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Alisina Toloei ◽  
Sanam Atashin ◽  
Mohammad Ebrahim Bahrololoom

In this study, carbon steel sheets were coated with a modified epoxy coating. The urea-modified montmorillonite clay nanoparticles were added to a DGEBA epoxy resin in different contents and then applied to the surfaces. The corrosion resistance of the coated samples was determined by electrochemical techniques (open circuit potential and linear polarization) in 3.5 wt% NaCl solutions at room temperature and 80°C. Electrochemical impedance spectroscopy (EIS) evaluated the properties of polymer-coated metals and their changes during the exposure to corrosive environments. Scanning electron microscopy (SEM) was used to characterize the coatings. An improvement of protective properties of epoxy coatings with an optimal percentage of the modified clay in comparison with pure epoxy was achieved.


2020 ◽  
Vol 71 (7) ◽  
pp. 187-196
Author(s):  
Maria Magdalena Pricopi ◽  
Romeu Chelariu ◽  
Nicolae Apostolescu ◽  
Doina-Margareta Gordin ◽  
Daniel Sutiman ◽  
...  

The aim of this study was to investigate the influence of different process parameters as chemical composition, the pH value and immersion time on the corrosion of the some TiMoNb alloys, using different electrochemical techniques such as: cyclic voltammetry, open circuit potential (OCP) measurement, polarization curves and electrochemical impedance spectroscopy (EIS). The alloys were analyzed in the natural pH of the Ringer solution, but also with an acidic modification of the solution (ph = 4) and a basic modification (ph = 8). The more acidic values of pH, the more evident are differences between corrosion behavior of titanium-based alloys depending on their chemical compositions and immersion times.


2015 ◽  
Vol 761 ◽  
pp. 407-411 ◽  
Author(s):  
Muhammad Zaimi ◽  
Mohd Asyadi Azam ◽  
Azizul Helmi Sofian ◽  
Kazuhiko Noda

Zinc and copper addition into electroless Ni-P alloy matrix produces quaternary Ni alloy that exhibits lower corrosion resistance behavior compared to Ni-P and Ni-Cu-P alloy in 3.5 wt% NaCl solution. The corrosion behavior of the alloy is previously studied using the anodic polarization curve measurement. The results show that the corrosion potential of different alloy composition is almost similar to each other for electroless Ni-Zn-Cu-P alloy. However, the surface resistance of the alloy needs to be confirmed by using electrochemical impedance spectroscopy. The alloy was first deposited on an iron substrate using electroless Ni alloy deposition method approximately similar thickness at different plating bath pH of 8.50 and 9.50. The Ni alloy coated substrate was used as working electrode immersed into a solution of 3.5 wt% NaCl. The electrochemical cell consists of Pt and Ag/AgCl/KCl (saturated) as counter and reference electrode respectively. Electrochemical impedance measurement was done at open circuit potential. The measurement started from 100 kHz to 10 mHz with 10 mV of sinusoidal perturbation applied to the cell. Other types of alloy including Ni-P, Ni-Cu-P and Ni-Zn-P, were compared with Ni-Zn-Cu-P alloy. From the results, the Ni-Zn-Cu-P exhibits the lowest corrosion behavior compared to other Ni alloy due to low charge transfer resistance (Rct) observed small inductive loop at low frequency region of the Nyquist plot. Furthermore, the Nyquist plot for Ni-Zn-Cu-P for pH 8.50 and 9.50 showed comparable result; hence, the effect of pH has less effect on corrosion resistance of the electroless Ni-Zn-Cu-P alloy.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 546 ◽  
Author(s):  
Kunyu Shi ◽  
Yi Zhang ◽  
Jinzhong Zhang ◽  
Zonghan Xie

The preparation of the Nb coating was performed on the bare Ti–6Al–4V alloy using the double glow discharge plasma technique. It was characterized that the Nb coating exhibited a face centered cubic (fcc) crystal structure and a pronounced (200) preferred orientation. The SEM micrograph of the cross section for the coating displayed dense microstructure with a thickness of approximately 18 µm. The critical load (Lc) of the coating was determined to be about 83.5 N by the scratch tests. The electrochemical corrosion resistance of the coating was examined in Ringer’s solution at 37 °C by a series of electrochemical techniques, including open-circuit potential (OCP), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and a Mott–Schottky analysis. As the result of the potentiodynamic polarization, the Nb coating possessed a more positive corrosion potential and lower corrosion current density than the Ti–6Al–4V substrate. EIS fitting date showed that the Nb coating always possessed a higher value of impedance and lower effective capacitance than those of the substrate during the five days of immersion testing. The main component of the passive film developed on the Nb coating was Nb2O5, confirmed by an X-ray photoelectron spectroscopy (XPS) analysis. A Mott–Schottky analysis demonstrated typical n-type semiconductor characteristics of the Nb coating, and both the donor density and flat band potential of the coating were lower than those of the substrate at all the given formation potential. These investigations demonstrate that the Nb coating can significantly improve the corrosion protection of uncoated Ti–6Al–4V and is thus a promising coating for the surface protection of bioimplants.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4635
Author(s):  
Farah Bechir ◽  
Simona Maria Bataga ◽  
Elena Ungureanu ◽  
Diana Maria Vranceanu ◽  
Mariana Pacurar ◽  
...  

Cobalt-chromium (Co-Cr) alloys are widely utilized in dentistry. The salivary pH is a significant factor, which affects the characteristics and the behavior of dental alloys through corrosion. This study aimed to evaluate the corrosion behavior in artificial saliva with different pH values (3, 5.7, and 7.6) of two commercial Co-Cr dental alloys manufactured by casting and by milling. Corrosion resistance was determined by the polarization resistance technique, and the tests were carried out at 37 ± 1 °C, in Carter Brugirard artificial saliva. After the electrochemical parameters, it can be stated that the cast Co-Cr alloy has the lowest corrosion current density, the highest polarization resistance, and the lowest speed of corrosion in artificial saliva with pH = 7.6. In the case of milled Co-Cr alloy, the same behavior was observed, but in artificial saliva with pH = 5.7, it recorded the most electropositive values of open circuit potential and corrosion potential. Although both cast and milled Co-Cr alloys presented a poorer corrosion resistance in artificial saliva with a more acidic pH value, the milled Co-Cr alloy had better corrosion behavior, making this alloy a better option for the prosthetic treatment of patients suffering from GERD.


Sign in / Sign up

Export Citation Format

Share Document