Study on the Enhanced Visible Photocatalysis Activity in Transition Metal Doped ZnS

2013 ◽  
Vol 734-737 ◽  
pp. 2351-2355
Author(s):  
Li Guan ◽  
Ai Ling Wu ◽  
Ting Kun Gu ◽  
Wei Wei Yu

The electronic structure and optical properties of pristine and Pd-doped or Ag-doped zinc blende ZnS were calculated with the ab-initio ultrasoft pseudopotential plane wave approximation method based on density functional theory (DFT). The results show that doping significantly alters the system band structure and the electronic density of states (DOS), effectivly enhancing the ZnS optical response and the photocatalytic activity in the visible light range. The microscopic mechanism shows that ZnS photocatalysis efficiency is observably improved through doping.

2021 ◽  
Vol 197 ◽  
pp. 110613
Author(s):  
Ijeoma Cynthia Onyia ◽  
Stella Ogochukwu Ezeonu ◽  
Dmitri Bessarabov ◽  
Kingsley Onyebuchi Obodo

2009 ◽  
Vol 79-82 ◽  
pp. 1245-1248 ◽  
Author(s):  
Pei Lin Han ◽  
Xiao Jing Wang ◽  
Yan Hong Zhao ◽  
Chang He Tang

Electronic structure and optical properties of non-metals (N, S, F, P, Cl) -doped cubic NaTaO3 were investigated systematically by density functional theory (DFT). The results showed that the substitution of (N, S, P, Cl) for O in NaTaO3 was effective in narrowing the band-gap relative to the F-doped NaTaO3. The larger red shift of the absorption edge and the higher visible light absorption at about 520 nm were found for the (N and P)-doped NaTaO3. The excitation from the impurity states to the conduction band may account for the red shift of the absorption edge in an electron-deficiency non-metal doped NaTaO3. The obvious absorption in the visible light region for (N and P)-doped NaTaO3 provides an important guidance for the design and preparation of the visible light photoactive materials.


Author(s):  
Yogeshwaran Krishnan ◽  
Sateesh Bandaru ◽  
Niall J. English

A series of transition-metal-doped Fe1−xMxCo(PO4)4(010) and Fe3Co1−xMx(PO4)4(010) electro-catalyst surfaces (with M = Mn, Os, Ru, Rh and Ir) have been modelled via density-functional theory (DFT) to gauge their oxygen-evolution reactions (OER).


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Jian Zhao ◽  
Wei Gao ◽  
Zhi-Gang Tao ◽  
Hong-Yun Guo ◽  
Man-Chao He

ABSTRACTKaolinite can be used for many applications, including the underground storage of gases. Density functional theory was employed to investigate the adsorption of hydrogen molecules on the kaolinite (001) surface. The coverage dependence of the adsorption sites and energetics was studied systematically for a wide range of coverage, Θ (from 1/16 to 1 monolayer). The three-fold hollow site is the most stable, followed by the bridge, top-z and top sites. The adsorption energy of H2 decreased with increasing coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighbouring H2 molecules. The coverage has obvious effects on hydrogen adsorption. Other properties of the H2/kaolinite (001) system, including the lattice relaxation and changes of electronic density of states, were also studied and are discussed in detail.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7071
Author(s):  
Shuxian Wei ◽  
Siyuan Liu ◽  
Shoufu Cao ◽  
Sainan Zhou ◽  
Yong Chen ◽  
...  

Owing to a stable and porous cage structure, natural gas hydrates can store abundant methane and serve as a potentially natural gas resource. However, the microscopic mechanism of how hydrate crystalline grows has not been fully explored, especially for the structure containing different guest molecules. Hence, we adopt density functional theory (DFT) to investigate the fusion process of structure I hydrates with CH4/C2H6 guest molecules from mono-cages to triple-cages. We find that the volume of guest molecules affects the stabilities of large (51262, L) and small (512, s) cages, which are prone to capture C2H6 and CH4, respectively. Mixed double cages (small cage and large cage) with the mixed guest molecules have the highest stability and fusion energy. The triangular triple cages exhibit superior stability because of the three shared faces, and the triangular mixed triple cages (large-small-large) structure with the mixed guest molecules shows the highest stability and fusion energy in the triple-cage fusion process. These results can provide theoretical insights into the growth mechanism of hydrates with other mono/mixed guest molecules for further development and application of these substances.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


Author(s):  
Victor H. Chávez ◽  
Adam Wasserman

In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost of solving this equation grows exponentially with the number of electrons and for more than ~100 electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using the electronic probability density as the central variable without having to calculate the Schrödinger wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the main variables, we discuss here how new methods can be developed that scale linearly with N while providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules?


2008 ◽  
Vol 92 (10) ◽  
pp. 101917 ◽  
Author(s):  
Changzeng Fan ◽  
Qiang Wang ◽  
Lixiang Li ◽  
Suhong Zhang ◽  
Yan Zhu ◽  
...  

2019 ◽  
Vol 41 (6) ◽  
pp. 932-932
Author(s):  
Mengmeng Wu Mengmeng Wu ◽  
Rongkai Pan Rongkai Pan ◽  
Jilei Liang Jilei Liang ◽  
Guohai Zhou Guohai Zhou ◽  
Li Ma and Chunyu Zhang Li Ma and Chunyu Zhang

The γ˝ phase (Mg4GdZn) precipitate in Mg-Gd-Zn alloy was calculated via first-principle density functional theory within the generalized gradient approximation. Through structure optimization of full relaxation, the lattice parameters were theoretically obtained, and the calculated Mg4GdZn is the most energetically stable in view of the formation energy. Independent elastic constants were also calculated, illustrating the calculated Mg4GdZn is mechanically stable. The shear modulus, polycrystalline bulk modulus, Poisson ratio, and Young’s modulus of Mg4GdZn were calculated via the Voigt-Reuss-Hill approximation. Elastic anisotropy and ductility were analyzed in details. Seen from their charge density distribution and electronic density of states, both metallic bond and covalent bond were found in Mg4GdZn.


Sign in / Sign up

Export Citation Format

Share Document