Bending Performance of Carbonized Bamboo Scrimber and Fracture Morphology Analysis after Different Ageing Treatments

2013 ◽  
Vol 744 ◽  
pp. 362-365 ◽  
Author(s):  
Xin Man Chang ◽  
Juan Wei ◽  
Ming Jie Guan

This paper described the influence of different ageing treatments on bending performance of carbonized bamboo scrimber according to three ageing standards (ASTM D1037, BS EN1087-1 and WCAMA). The modulus of elasticity (MOE) and modulus of rupture (MOR) were tested and the fracture morphology of the samples after mechanical test was also analyzed by SEM before and after ageing. The results showed that the average reduction rates of MOE and MOR were respectively 47.48% and 34.98%. In addition, SEM micrographs revealed that the fracture morphology of ASTM and BS EN presented smoother surfaces than WCAMA. The fracture surface of WCAMA was similar to Control but smoother in some parts. This was mainly due to the brittle rupture playing a dominating role in different degrees based on three ageing treatments. In conclusion, the brittleness of material after ageing was intensified leading to the decline of the bending performance.

2013 ◽  
Vol 744 ◽  
pp. 366-369
Author(s):  
Juan Wei ◽  
Dan Zeng ◽  
Ming Jie Guan

In this paper, the bending properties of bamboo-wood container flooring and bamboo curtain-OSB container flooring were tested and the six-cycle artificial accelerated aging method of ASTM D1037 was conducted to evaluate the aging performance of two kinds of bamboo-wood container floorings. The modulus of rupture (MOR) and modulus of elasticity (MOE) were tested in the longitudinal and transverse directions before and after aging. The results showed that both the bending strength and MOE decreased after aging. The retention ratios of MOR of the bamboo-wood container flooring and bamboo curtain-OSB container flooring were respectively 43.5%, 72.0%, and the retention ratios of MOE were 54.6%, 76.3%. In general, the effect of aging on the bamboo-wood container flooring was larger than that on the bamboo curtain-OSB container flooring.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2869-2881
Author(s):  
Agnieszka Laskowska

Oak (Quercus robur L.), iroko (Milicia excelsa (Welw.) C.C. Berg), and tauari (Couratari spp.) wood were subjected to cyclic thermo-mechanical treatment (CTMT). The densification temperature amounted to 100 °C or 150 °C. The greatest changes in the modulus of rupture (MOR) value of the iroko wood, depending on the number of thermo-mechanical modification cycles, were noted. The MOR of the iroko wood, densified at 100 °C or 150 °C, after second thermo-mechanical modification cycle was twice as high as before the modification. No significant differences were observed between the modulus of elasticity (MOE) of oak wood before and after one modification cycle. Similar dependencies were noted in iroko wood. The thermo-mechanical modification performed over two cycles led to the highest increase, by about 56%, in MOE in oak wood densified at 150 °C. It was demonstrated that modification at 150 °C had a negative impact on iroko wood, which was manifested in the lower compression ratio of iroko at 150 °C than at 100 °C.


Holzforschung ◽  
2018 ◽  
Vol 72 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Min-Jay Chung ◽  
Sheng-Yang Wang

AbstractThe properties of oriented bamboo scrimber boards (OBSB) have been investigated at three density levels (0.8, 0.9, and 1.0 g cm3), while the boards were made from moso bamboo (Phyllostachys pubescens) grown in Taiwan (T-OBSB) and China (C-OBSB). A non-destructive technique (NDT), ultrasonic-wave velocity (Vu) measurements were applied and the dynamic modulus of elasticity (MOEdyn) was calculated. Moreover, static modulus of elasticity (MOE), modulus of rupture (MOR), profile density distribution, internal bond strength (IB), springback (SB), and dimensional stability were determined based on traditional methods. Positive linear relationships between density andVu, MOEdyn, MOE and MOR were observed, no matter if the measurements were done parallel (//) or perpendicular (⊥) to the fiber direction of the OBSBs. Moreover,Vu(//), MOEdyn,u(//), MOE(//), and MOR(//)were higher thanVu(⊥), MOEdyn,u(⊥), MOE(⊥)and MOR(⊥). C-OBSB had slightly lowerVu(//),Vu(⊥), MOEdyn,u(//)and DMOEu(⊥)values than T-OBSB. T-OBSB had higher MOE(//), MOE(⊥)and MOR(//)than C-OBSB, but less MOR(⊥). The profile density distribution of high-density T-OBSB showed singnificant data scattering. The profile density distribution of C-OBSB was homogeneous at all density levels. IB and SB data are directly proportional to density, but water absorption, thickness swelling and volumetric swelling are inversely proportional to density. T-OBSB has better bonding and strength properties, and dimensional stability than C-OBSB.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


2019 ◽  
Vol 51 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Frank C Owens ◽  
Steve P Verrill ◽  
Rubin Shmulsky ◽  
Robert J Ross

2014 ◽  
Vol 1025-1026 ◽  
pp. 543-546
Author(s):  
Juliana Cortez Barbosa ◽  
Anderson Luiz da Silva Michelon ◽  
Elen Aparecida Martines Morales ◽  
Cristiane Inácio de Campos ◽  
André Luis Christoforo ◽  
...  

The aim of this research was to produce three-layer Medium Density Particleboard (MDP), with the addition of impregnated paper, in the inner layer, in proportions of 1; 5 and 20%. In this study, MDP was composed with particles of small size in outer layers, and larger particles in internal layer. After panel manufacturing, physical and mechanical tests based on Brazilian Code ABNT NBR 14.810 were carried out to determine moisture content; density; thickness swelling; water absorption; modulus of rupture (MOR) and modulus of elasticity (MOE) in static bending and internal adhesion. Test results were compared to commercial panels, produced with 100% Eucalyptus, considering the requirements specified by Brazilian Code. Properties presented values close to normative specifications, indicating positively the possibility of production of MDP using addition of waste paper impregnated.


2011 ◽  
Vol 264-265 ◽  
pp. 819-824 ◽  
Author(s):  
Md. Rezaur Rahman ◽  
Sinin Hamdan ◽  
M. Saiful Islam ◽  
Md. Shahjahan Mondol

In Malaysia, especially Borneo Island Sarawak has a large scale of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia Spp, Koompassia Malaccensis and Eugenia Spp were chemically treated with sodium meta periodate to convert them into wood polymer composites. Manufactured wood polymer composites were characterized using mechanical testing (modulus of elasticity (MOE), modulus of rupture (MOR), static Young’s modulus) and decay resistance test. Modulus of elasticity and modulus of rupture were calculated using three point bending test. Static Young’s modulus and decay resistance were calculated using compression parallel to gain test and natural laboratory decay test respectively. The manufactured wood polymer composites yielded higher modulus of elasticity, modulus of rupture and static Young’s modulus. Wood polymer composite had high resistant to decay exposure, while Eugenia Spp wood polymer composite had highly resistant compared to the other ones.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2014 ◽  
Vol 1025-1026 ◽  
pp. 192-195
Author(s):  
Eduardo Chahud ◽  
Luiz Antônio Melgaço Nunes Branco ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane Aparecida Gomes Battistelle ◽  
...  

1024x768 This research aimed to investigate possible differences in values of longitudinal modulus of elasticity for wood species usually employed for structural purposes, as Castanheira (Bertholletia excelsa), Cambará (Erisma uncinatum), Cumaru (Dipteryx odorata), Jatobá (Hymenaea stilbocarpa), Garapa (Apuleia leiocarpa) and Peroba Rosa (Aspidosperma polyneuron), obtained from compression and tension parallel to grain, and static bending tests. Recommendations of the Brazilian standard ABNT NBR 7190:1997, Annex B, were followed. Statistical analysis results for the cited properties, had equivalent averages for the six wood species analyzed. This confirms that any of the three tests can be used to obtain the longitudinal elastic modulus and which could avoid the necessity of evaluating stiffness values for wood by more than one kind of mechanical test. Normal 0 21 false false false PT-BR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabela normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2011 ◽  
Vol 250-253 ◽  
pp. 3533-3537 ◽  
Author(s):  
Li Hua Zhao ◽  
Jing Yun Chen ◽  
Sheng Wu Wang

Through studying the bending fracture and cleavage fracture of the asphalt mixture within the different temperature condition, confirming that the temperature influences the microscopic mechanism of mixture cracking: the fracture is relatively flat with low temperture, the destruction of the asphalt mixture is also mainly result of the brittle fracture; As the temperature rise, fracture surface becomes coarse, some part show large plastic elapse deformation. Adding fiber can reduce thickness of the asphalt membrane, improve the bonding strength of asphalt mastic, and greatly increase the ratio of the aggregate fracture and interface zone fracture, so as to enhance the asphalt mixture crack-resistance. The fracture morphology of asphalt mixture has a better reflection for its mechanical characteristics.


Sign in / Sign up

Export Citation Format

Share Document