Analysis of Three-Dimensional Piezo-Electric Beams via a Unified Formulation

2013 ◽  
Vol 745 ◽  
pp. 101-118 ◽  
Author(s):  
Gaetano Giunta ◽  
Yao Koutsawa ◽  
Salim Belouettar

A Unified Formulation for deriving several higher-order theories and related finite elements for beams is presented within this paper.Three-dimensional structures with piezo-electric layers are considered.Static and free vibration analyses are carried out.Models' main unknowns are the displacements and the electric potential.They are approximated above the beam cross-section via Lagrange's polynomials in a layer-wise sense.Finite elements stiffness and mass matrices are derived in a nucleal form using d'Alembert's Principle.This nucleal form is representative of the generic term in the approximating expansion of the displacements and electric potential over the cross-section.It is, therefore, invariant versus the theory expansion order and the element nodes' number.In such a manner, higher-order displacements-based theories that account for non-classical effectssuch as transverse shear deformations and cross-section in- and out-of-plane warping are straightforwardly formulated.Results are given in terms of displacements, electrical potential and stresses.Comparison with three-dimensional finite elements models are provided, showing thataccurate results can be obtained with reduced computational costs.

1996 ◽  
Vol 11 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Alphose Zingoni

Where a finite element possesses symmetry properties, derivation of fundamental element matrices can be achieved more efficiently by decomposing the general displacement field into subspaces of the symmetry group describing the configuration of the element. In this paper, the procedure is illustrated by reference to the simple truss and beam elements, whose well-known consistent-mass matrices are obtained via the proposed method. However, the procedure is applicable to all one-, two- and three-dimensional finite elements, as long as the shape and node configuration of the element can be described by a specific symmetry group.


Author(s):  
E. Carrera ◽  
A. Pagani ◽  
M. Petrolo

This paper proposes an advanced approach to the analysis of reinforced-shell aircraft structures. This approach, denoted as Component-Wise (CW), is developed by using the Carrera Unified Formulation (CUF). CUF is a hierarchical formulation allowing for the straightforward implementation of any-order one-dimensional (1D) beam theories. Lagrange-like polynomials are used to discretize the displacement field on the cross-section of each component of the structure. Depending on the geometrical and material characteristics of the component, the capabilities of the model can be enhanced and the computational costs can be kept low through smart discretization strategies. The global mathematical model of complex structures (e.g. wings or fuselages) is obtained by assembling each component model at the cross-section level. Next, a classical 1D finite element (FE) formulation is used to develop numerical applications. It is shown that MSC/PATRAN can be used as pre- and post-processor for the CW models, whereas MSC/NASTRAN DMAP alters can be used to solve both static and dynamic problems. A number of typical aeronautical structures are analyzed and CW results are compared to classical beam theories (Euler-Bernoulli and Timoshenko), refined models and classical solid/shell FE solutions from the commercial code MSC/NASTRAN. The results highlight the enhanced capabilities of the proposed formulation. In fact, the CW approach is clearly the natural tool to analyze wing structures, since it leads to results that can be only obtained through three-dimensional elasticity (solid) elements whose computational costs are at least one-order of magnitude higher than CW models.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650026 ◽  
Author(s):  
Gaetano Giunta ◽  
Salim Belouettar ◽  
Olivier Polit ◽  
Laurent Gallimard ◽  
Philippe Vidal ◽  
...  

A family of hierarchical one-dimensional beam finite elements developed within a variables separation framework is presented. A Proper Generalized Decomposition (PGD) is used to divide the global three-dimensional problem into two coupled ones: one defined on the cross-section space (beam modeling kinematic approximation) and one belonging to the axis space (finite element solution). The displacements over the cross-section are approximated via a Unified Formulation (UF). A Lagrangian approximation is used along the beam axis. The resulting problems size is smaller than that of the classical equivalent finite element solution. The approach is, then, particularly attractive for higher-order beam models and refined axial meshes. The numerical investigations show that the proposed method yields accurate yet computationally affordable three-dimensional displacement and stress fields solutions.


Author(s):  
Zhe Liu ◽  
Fuqiang Zhou ◽  
Christian Oertel ◽  
Yintao Wei

The three-dimensional dynamic equations of a ring with a noncircular cross-section on an elastic foundation are obtained using the Hamilton variation principle. In contrast to the previous rings on elastic foundation model, the developed model incorporates both the in-plane and out-of-plane bend and the out-of-plane torsion in displacement fields. The errors in the derivation of the initial stress and the work of the internal pressure in previous rings on elastic foundation models have been corrected. The mode expansion was used to obtain the analytical solution of the natural frequency. The initial motivation is to develop a theoretical model for car tire dynamics. Therefore, to validate the proposed model, the in-plane and out-of-plane vibrations of a truck tire have been analyzed using the proposed method. To further verify the accuracy of the model, the results of the theoretical formula are compared with the finite element analysis and modal test, and good agreement can be found.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar

This paper addresses a free vibration analysis of thin-walled isotropic beams via higher-order refined theories. The unknown kinematic variables are approximated along the beam cross section as aN-order polynomial expansion, whereNis a free parameter of the formulation. The governing equations are derived via the dynamic version of the Principle of Virtual Displacements and are written in a unified form in terms of a “fundamental nucleus.” This latter does not depend upon order of expansion of the theory over the cross section. Analyses are carried out through a closed form, Navier-type solution. Simply supported, slender, and short beams are investigated. Besides “classical” modes (such as bending and torsion), several higher modes are investigated. Results are assessed toward three-dimensional finite element solutions. The numerical investigation shows that the proposed Unified Formulation yields accurate results as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam.


1995 ◽  
Vol 29 (16) ◽  
pp. 2134-2159 ◽  
Author(s):  
Clinton Chapman ◽  
John Whitcomb

This paper examines the effect of assumed tow architecture on the predicted moduli and stresses in plain weave textile composites. In particular, the effect of how a constant cross-section is assumed to sweep-out the volume of a tow is explored. Two architectures are examined which have a sinusoidal tow path and a lenticular cross-section. Three-dimensional finite elements are employed to model a T300/Epoxy plain weave composite with symmetrically stacked mats. Macroscopically homogeneous in-plane extension and shear and transverse shear loadings were considered. Symmetries are exploited which permitted modeling of only 1/32nd of the unit cell. Accounting for the variation of material properties throughout each element is determined to be necessary for accurate prediction of stresses in the composite. For low waviness, the two tow architectures examined are very similar. At high waviness, the stress predictions are much more sensitive to the assumed tow geometry.


Sign in / Sign up

Export Citation Format

Share Document