Study on Mixing Time in Bottom-Blowing Ladle with Immersed Tube

2013 ◽  
Vol 750-752 ◽  
pp. 400-403
Author(s):  
Qing Hua Qi ◽  
Ming Gang Shen ◽  
De Hui Zhang ◽  
Tao Wu

As large flow rate of argon blowing in the process of bottom argon blowing ladle will cause severe fluctuations and sprays of molten steel, making the slags surface boiled and steel secondly oxidized, melting the refractory materials in the ladle, the flow rate of bottom argon blowing is limited, which will affect the efficiency of stirring. A 1:7 ratio ladle water model is established in the lab, and we will discuss how the diameter (d) of immersed tube, inserting depth (h) and the rate of bottom argon blowing affect the mixing time. The results show that the fluctuations on the steel surface can be diminished by the variations of diameters of immersed tube and inserting depth, the mixing time can be shorted by the increased flow rate of bottom argon blowing.

2013 ◽  
Vol 734-737 ◽  
pp. 1511-1515
Author(s):  
De Hui Zhang ◽  
Ming Gang Shen ◽  
Qing Hua Qi ◽  
Jin Wei Kuang

In the process of bottom argon blowing large argon flow rate can cause vigorous fluctuations on the surface of the molten steel and splash and reoxidize the molten steel, making the slag rolled into the steel slag, also causing the erosion of the ladle lining refractories. A 1:7 ratio ladle water model system of 150 ton ladle was established from the similarity theory in the lab. Study and analyze the effects of the inserting depth and diameter of immersed tube and bottom blowing flow rate on the fluctuation of the surface of liquid steel. Results show that the fluctuations on the surface of steel can be limited effectively by changing the diameter and inserted depth of immersed tube when selecting a larger flow rate of bottom blowing, which improve the mixing effect of liquid steel.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 479 ◽  
Author(s):  
Yang ◽  
Jin ◽  
Zhu ◽  
Dong ◽  
Lin ◽  
...  

Argon stirring is one of the most widely used metallurgical methods in the secondary refining process as it is economical and easy, and also an important refining method in clean steel production. Aiming at the issue of poor homogeneity of composition and temperature of a bottom argon blowing ladle molten steel in a Chinese steel mill, a 1:5 water model for 110 t ladle was established, and the mixing time and interface slag entrainment under the different conditions of injection modes, flow rates and top slag thicknesses were investigated. The flow dynamics of argon plume in steel ladle was also discussed. The results show that, as the bottom blowing argon flow rate increases, the mixing time of ladle decreases; the depth of slag entrapment increases with the argon flow rate and slag thickness; the area of slag eyes decreases with the decrease of the argon flow rate and increase of slag thickness. The optimum argon flow rate is between 36–42 m3/h, and the double porous plugs injection mode should be adopted at this time.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hengxuan Luan ◽  
Liyuan Weng ◽  
Ranhui Liu ◽  
Yuanzhong Luan ◽  
Dongmin Li

This paper describes the investigations performed to better understand two-stage rotor speed matching in a contrarotating fan. In addition, this study develops a comprehensive measuring and communication system for a contrarotating fan using ZigBee network. The investigation method is based on three-dimensional RANS simulations; the RANS equations are solved by the numerical method in conjunction with a SST turbulence model. A wireless measurement system using big data method is first designed, and then a comparison is done with experimental measurements to outline the capacity of the numerical method. The results show that when contrarotating fan worked under designed speed, performance of two-stages rotors could not be matched as the designed working condition was deviated. Rotor 1 had huge influences on flow rate characteristics of a contrarotating fan. Rotor 2 was influenced by flow rates significantly. Under large flow rate condition, the power capability of rotor 2 became very weak; under working small flow rate condition, overloading would take place to class II motor. In order to solve the performance mismatch between two stages of CRF under nondesigned working conditions, under small flow rate condition, the priority shall be given to increase of the speed of rotor 1, while the speed of rotor 2 shall be reduced appropriately; under large flow rate condition, the speed of rotor 1 shall be reduced and the speed of rotor 2 shall be increased at the same time.


2011 ◽  
Vol 361-363 ◽  
pp. 639-643 ◽  
Author(s):  
Kai Dong ◽  
Rong Zhu ◽  
Wen Juan Liu

Bottom blown stirring technology application in EAF was studied in this paper. The basic principle of bottom blowing process was researched, the bottom blown stirring can give strong stirring effect on the molten steel bath, thus bath mixing time was shortened, decarburization and dephosphorization were improved, however over stirring would lead to liquid steel incontact with atmosphere air. Reasonable process was considered on Consteel EAF. results show that: with bottom-blown stirring technology, decarburization and dephosphorization increase significantly; oxygen and lime consumption decrease; content of FeO in final slag reduces; and heat time becomes short.


Author(s):  
Zunqiang Fan ◽  
Jianfang Liu ◽  
Jingshi Dong ◽  
Jianqiao Li ◽  
Bin Jiang

2008 ◽  
Vol 74 (742) ◽  
pp. 1270-1277
Author(s):  
Fuminori MATSUYAMA ◽  
Michio SADATOMI ◽  
Akimaro KAWAHARA ◽  
Kentarou FUKAMACHI

2004 ◽  
Vol 90 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Jin YOSHIDA ◽  
Daisuke IGUCHI ◽  
Manabu IGUCHI

Sign in / Sign up

Export Citation Format

Share Document