Bottom-Blown Stirring Technology Application in Consteel EAF

2011 ◽  
Vol 361-363 ◽  
pp. 639-643 ◽  
Author(s):  
Kai Dong ◽  
Rong Zhu ◽  
Wen Juan Liu

Bottom blown stirring technology application in EAF was studied in this paper. The basic principle of bottom blowing process was researched, the bottom blown stirring can give strong stirring effect on the molten steel bath, thus bath mixing time was shortened, decarburization and dephosphorization were improved, however over stirring would lead to liquid steel incontact with atmosphere air. Reasonable process was considered on Consteel EAF. results show that: with bottom-blown stirring technology, decarburization and dephosphorization increase significantly; oxygen and lime consumption decrease; content of FeO in final slag reduces; and heat time becomes short.

2013 ◽  
Vol 734-737 ◽  
pp. 1511-1515
Author(s):  
De Hui Zhang ◽  
Ming Gang Shen ◽  
Qing Hua Qi ◽  
Jin Wei Kuang

In the process of bottom argon blowing large argon flow rate can cause vigorous fluctuations on the surface of the molten steel and splash and reoxidize the molten steel, making the slag rolled into the steel slag, also causing the erosion of the ladle lining refractories. A 1:7 ratio ladle water model system of 150 ton ladle was established from the similarity theory in the lab. Study and analyze the effects of the inserting depth and diameter of immersed tube and bottom blowing flow rate on the fluctuation of the surface of liquid steel. Results show that the fluctuations on the surface of steel can be limited effectively by changing the diameter and inserted depth of immersed tube when selecting a larger flow rate of bottom blowing, which improve the mixing effect of liquid steel.


2013 ◽  
Vol 750-752 ◽  
pp. 400-403
Author(s):  
Qing Hua Qi ◽  
Ming Gang Shen ◽  
De Hui Zhang ◽  
Tao Wu

As large flow rate of argon blowing in the process of bottom argon blowing ladle will cause severe fluctuations and sprays of molten steel, making the slags surface boiled and steel secondly oxidized, melting the refractory materials in the ladle, the flow rate of bottom argon blowing is limited, which will affect the efficiency of stirring. A 1:7 ratio ladle water model is established in the lab, and we will discuss how the diameter (d) of immersed tube, inserting depth (h) and the rate of bottom argon blowing affect the mixing time. The results show that the fluctuations on the steel surface can be diminished by the variations of diameters of immersed tube and inserting depth, the mixing time can be shorted by the increased flow rate of bottom argon blowing.


2012 ◽  
Vol 472-475 ◽  
pp. 2581-2587
Author(s):  
Yan Yan Song ◽  
Guo Qi Liu ◽  
Hong Xia Li ◽  
Wen Gang Yang

The influence of the different airway structure on mixing time of molten steel are studied through using water model experiments. The bubble volume and velocity have been investigated through the PIV for different airway structure in the flow of 1m3/h. Results showed that with the slit distribution same, the smaller the slit width, the greater the volume percentage of the large bubbles and the average velocity of the bubbles in rising, but the shorter the mixing time. Reduce the number of the slit can lead to the volume percentage of the large bubbles and the average velocity of the bubbles in rising decreases, the mixing time extended, and it is more obvious to the mixing time to reduce the number of the inner slit. Inflatable volume<1.1m3/h, with the slit in the outer ring only and the number of slit same, the volume percentage and the average velocity of the large bubbles in rising is larger, the mixing time is reduced. Inflatable volume≥1.1m3/h, the slit evenly distribution is better for mixing.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 448
Author(s):  
Adam Cwudziński

Developing a technology for introducing alloy addition to liquid steel during the course of continuous casting process seems to be an interesting approach to enhancing the steelmaking process, especially as the effective introduction of micro-additives or non-metallic inclusion modifiers to the liquid steel is the key to the production of the highest-quality steel. This paper presents the results of investigation describing the process of liquid steel chemical homogenisation in the two-strand slab tundish. The alloy was fed to liquid steel by pulse-step method. Five tundish equipment variants with different flow control devices and alloy addition feeding positions were considered. The paper includes fields of liquid steel flow, alloy concentration vs. time curves, dimensionless mixing time, minimum time values and alloy concentration deviations at tundish outlets. The results pointed much more effectively with liquid steel mixing nickel than aluminium. For aluminium obtaining a 95% chemical homogenisation level requires three-fold more time. Moreover, it is definitely beneficial for chemical homogenisation to initiate the alloying process simultaneously in two sites. This procedure generates, among others, the least alloy deviation of concentration at tundish outlets.


2013 ◽  
Vol 634-638 ◽  
pp. 3110-3113
Author(s):  
Shu Huan Wang ◽  
He Jun Zhang ◽  
Ding Guo Zhao

According to the actual situation of refining high nitrogen steel with the laboratory high pressure reaction axe, the molten steel flow field in the high-pressure and bottom-blowing nitrogen reactor was simulated by using the software Fluent. The rules of the influence of pressure factor on the molten steel flow field characteristics, turbulent kinetic energy and gas content were explored. According to the characteristics of the flow field and gas-liquid two phase structure, the rules of the influence of pressure factor on nitrogen concentration distribution were analyzed. So some useful theoretical basis and guidance were provided for laboratory refining high nitrogen steel and industrial production in the future.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Jiankun Sun ◽  
Jiangshan Zhang ◽  
Wenhui Lin ◽  
Xiaoming Feng ◽  
Qing Liu

Bottom blowing agitation plays a crucial role in improving the reaction kinetics condition of molten bath during the steelmaking process. Herein, the influence of bottom blowing mode on the flow and mixing characteristics of molten bath and the abrasion characteristics of refractory lining in a 6:1 scaled-down model of a 100 t converter were investigated using physical and numerical simulations together. Eight bottom blowing modes were designed (uniform, three-point linear co-direction, three-point linear unco-direction, two-point linear, circumferential linear, A-type, V-type, and triangle alternating). The results indicated that bottom blowing mode has a significant effect on the local flow field at the inner ring of bottom tuyeres, the velocity interval distribution, and the turbulent kinetic energy, which in turn determines the tracer diffusion path and rate as well the mixing time of molten bath. Reasonable non-uniform bottom blowing modes promote the interaction between the various stirring sub-zones of the molten bath. Among them, the three-point linear co-direction mode and A-type mode have the highest mixing efficiency under the conditions of bottom blowing and combined blowing, respectively, which is superior to the uniform mode. In addition, the bottom blowing mode changed the location and degree of abrasion of the refractory lining, and the total abrasion of the non-uniform mode was reduced. The average value and fluctuation degree of integral wall shear stress for the A-type mode were minimal.


2020 ◽  
Vol 844 ◽  
pp. 9-23
Author(s):  
Sergii Gerasin ◽  
Dorota Kalisz ◽  
Jerzy Iwanciw

The current work deals the phenomenon of non-metallic inclusions as a result of the addition of Yttrium as an alloying component. The order of introducing individual components determines its final content in steel. This problem was analyzed using the WYK_Stal program developed at AGH-UST. Individual cases were considered using the accepted thermodynamics models based on Wagner’s formalism. The study of Y2O3 and Y2S3 phase precipitation and the relationship between the addition of Y, Al, Ca, O and S in molten steel was studied using the thermodynamic models. Based on the simulation, the authors stated that, the introduction of aluminum as the final deoxidizer into the liquid steel before the yttrium, results in the formation of non-metallic oxide inclusions. The low oxygen content in the metal bath promotes the formation of yttrium sulphide. In the case of calcium dosing, it is reasonable that, the yttrium is introduced after this element, which limits the losses on the formation of the yttrium sulphide phase.


2019 ◽  
Vol 116 (6) ◽  
pp. 617
Author(s):  
Gujun Chen ◽  
Qiangqiang Wang ◽  
Shengping He

An Eulerian multi-fluid VOF model, the coupling of the Eulerian model and the “VOF” interface tracking method, offered by ANSYS Fluent has been first applied to investigate the complex multiphase flow in an industrial Ruhrstahl–Heraeus (RH) degasser. The idea of this study is to use the Eulerian model in the regions of the domain where the argon bubbles are dispersed in molten steel; in the regions of the domain where the sharp interfaces between the steel and slag or argon are of interest, the “VOF” method is adopted. The calculated flow characteristic, mixing time and circulation flow rate of molten steel in the RH degasser agree well with the observations reported in literature. Compared with the widely accepted Eulerian method and the discrete phase model–volume of fluid (DPM–VOF) coupled method, the Eulerian multi-fluid VOF model demonstrates the suitability for modeling the multiphase flow in the RH degasser where both dispersed and sharp interfaces are present.


2011 ◽  
Vol 16 ◽  
pp. 284-290 ◽  
Author(s):  
Jiandong Shen ◽  
Yong Zhao ◽  
Guijin Han

Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 479 ◽  
Author(s):  
Yang ◽  
Jin ◽  
Zhu ◽  
Dong ◽  
Lin ◽  
...  

Argon stirring is one of the most widely used metallurgical methods in the secondary refining process as it is economical and easy, and also an important refining method in clean steel production. Aiming at the issue of poor homogeneity of composition and temperature of a bottom argon blowing ladle molten steel in a Chinese steel mill, a 1:5 water model for 110 t ladle was established, and the mixing time and interface slag entrainment under the different conditions of injection modes, flow rates and top slag thicknesses were investigated. The flow dynamics of argon plume in steel ladle was also discussed. The results show that, as the bottom blowing argon flow rate increases, the mixing time of ladle decreases; the depth of slag entrapment increases with the argon flow rate and slag thickness; the area of slag eyes decreases with the decrease of the argon flow rate and increase of slag thickness. The optimum argon flow rate is between 36–42 m3/h, and the double porous plugs injection mode should be adopted at this time.


Sign in / Sign up

Export Citation Format

Share Document