scholarly journals Water Model Experiment on Mixing Time in a Cylindrical Bath Agitated by Swirling Molten Steel Jet

2004 ◽  
Vol 90 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Jin YOSHIDA ◽  
Daisuke IGUCHI ◽  
Manabu IGUCHI
Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 479 ◽  
Author(s):  
Yang ◽  
Jin ◽  
Zhu ◽  
Dong ◽  
Lin ◽  
...  

Argon stirring is one of the most widely used metallurgical methods in the secondary refining process as it is economical and easy, and also an important refining method in clean steel production. Aiming at the issue of poor homogeneity of composition and temperature of a bottom argon blowing ladle molten steel in a Chinese steel mill, a 1:5 water model for 110 t ladle was established, and the mixing time and interface slag entrainment under the different conditions of injection modes, flow rates and top slag thicknesses were investigated. The flow dynamics of argon plume in steel ladle was also discussed. The results show that, as the bottom blowing argon flow rate increases, the mixing time of ladle decreases; the depth of slag entrapment increases with the argon flow rate and slag thickness; the area of slag eyes decreases with the decrease of the argon flow rate and increase of slag thickness. The optimum argon flow rate is between 36–42 m3/h, and the double porous plugs injection mode should be adopted at this time.


2013 ◽  
Vol 750-752 ◽  
pp. 400-403
Author(s):  
Qing Hua Qi ◽  
Ming Gang Shen ◽  
De Hui Zhang ◽  
Tao Wu

As large flow rate of argon blowing in the process of bottom argon blowing ladle will cause severe fluctuations and sprays of molten steel, making the slags surface boiled and steel secondly oxidized, melting the refractory materials in the ladle, the flow rate of bottom argon blowing is limited, which will affect the efficiency of stirring. A 1:7 ratio ladle water model is established in the lab, and we will discuss how the diameter (d) of immersed tube, inserting depth (h) and the rate of bottom argon blowing affect the mixing time. The results show that the fluctuations on the steel surface can be diminished by the variations of diameters of immersed tube and inserting depth, the mixing time can be shorted by the increased flow rate of bottom argon blowing.


2012 ◽  
Vol 472-475 ◽  
pp. 2581-2587
Author(s):  
Yan Yan Song ◽  
Guo Qi Liu ◽  
Hong Xia Li ◽  
Wen Gang Yang

The influence of the different airway structure on mixing time of molten steel are studied through using water model experiments. The bubble volume and velocity have been investigated through the PIV for different airway structure in the flow of 1m3/h. Results showed that with the slit distribution same, the smaller the slit width, the greater the volume percentage of the large bubbles and the average velocity of the bubbles in rising, but the shorter the mixing time. Reduce the number of the slit can lead to the volume percentage of the large bubbles and the average velocity of the bubbles in rising decreases, the mixing time extended, and it is more obvious to the mixing time to reduce the number of the inner slit. Inflatable volume<1.1m3/h, with the slit in the outer ring only and the number of slit same, the volume percentage and the average velocity of the large bubbles in rising is larger, the mixing time is reduced. Inflatable volume≥1.1m3/h, the slit evenly distribution is better for mixing.


2011 ◽  
Vol 361-363 ◽  
pp. 639-643 ◽  
Author(s):  
Kai Dong ◽  
Rong Zhu ◽  
Wen Juan Liu

Bottom blown stirring technology application in EAF was studied in this paper. The basic principle of bottom blowing process was researched, the bottom blown stirring can give strong stirring effect on the molten steel bath, thus bath mixing time was shortened, decarburization and dephosphorization were improved, however over stirring would lead to liquid steel incontact with atmosphere air. Reasonable process was considered on Consteel EAF. results show that: with bottom-blown stirring technology, decarburization and dephosphorization increase significantly; oxygen and lime consumption decrease; content of FeO in final slag reduces; and heat time becomes short.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1942
Author(s):  
Gerardo Aguilar ◽  
Gildardo Solorio-Diaz ◽  
Alicia Aguilar-Corona ◽  
José Angel Ramos-Banderas ◽  
Constantin A. Hernández ◽  
...  

The use of porous plugs in injecting gas through the bottom of a ladle forms vertical plumes in a very similar way to a truncated cone. The gas plume when exiting the plug has a smaller diameter compared to that formed in the upper zone of the ladle because inertial forces predominate over buoyancy forces in this zone. In addition, the magnitude of the plume velocity is concentrated in an upward direction, which increases the likelihood of low velocity zones forming near the bottom of the ladle, especially in lower corners. In this work, a plug with spiral-shaped channels with different torsion angles is proposed, with the objective that the gas, when passing through them, has a tangential velocity gain or that the velocity magnitude is distributed in the three axes and does not just focus on the upward direction, helping to decrease low velocity zones near the bottom of the ladle for better mixing times. For the experimentation, we worked in a continuous casting ladle water model with two configuration injections, which in previous works were reported as the most efficient in mixing the steel in this ladle. The results obtained using the PIV technique (particle image velocimetry) and conductimetry technique indicate that the plugs with the torsion channels at angles of 60° and 120° improve the mixing times for the two injection configurations.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 886 ◽  
Author(s):  
Kaitian Zhang ◽  
Heng Cui ◽  
Rudong Wang ◽  
Yang Liu

Particle image velocimetry (PIV) system was adopted to investigate the relationship between the mixing phenomenon and the flow field of a 210 t RH degasser by a 1:4 scale water model. The results of mixing simulation experiments indicated that the mixing time decreased with the increase of gas blowing rate. However, with the increase of Snorkel immersion depth (SID), the mixing time presented a decreasing rend firstly and then increased. The measurement of flow fields of RH ladle by PIV system can explain the phenomenon above. According to the characteristics of the flow field in RH ladle, the flow field can be divided into the mixing layer, the transition layer, and the inactive layer. On the one hand, the stirring power in RH ladle and vacuum chamber both increases with more gas blowing rate, leading to the decrease of mixing time. On the other hand, with SID increases from 400 mm to 480 mm, the gas blowing depth increase results in the mixing power increases, and the mixing time decreases at the beginning. Because of too much-molten steel in the vacuum chamber and the expanding of the inactive layer in RH ladle, however, the utilization rate of the gas driving force begins to decrease. Therefore, the mixing time started to increases with the increase of SID.


2019 ◽  
Vol 116 (6) ◽  
pp. 617
Author(s):  
Gujun Chen ◽  
Qiangqiang Wang ◽  
Shengping He

An Eulerian multi-fluid VOF model, the coupling of the Eulerian model and the “VOF” interface tracking method, offered by ANSYS Fluent has been first applied to investigate the complex multiphase flow in an industrial Ruhrstahl–Heraeus (RH) degasser. The idea of this study is to use the Eulerian model in the regions of the domain where the argon bubbles are dispersed in molten steel; in the regions of the domain where the sharp interfaces between the steel and slag or argon are of interest, the “VOF” method is adopted. The calculated flow characteristic, mixing time and circulation flow rate of molten steel in the RH degasser agree well with the observations reported in literature. Compared with the widely accepted Eulerian method and the discrete phase model–volume of fluid (DPM–VOF) coupled method, the Eulerian multi-fluid VOF model demonstrates the suitability for modeling the multiphase flow in the RH degasser where both dispersed and sharp interfaces are present.


Sign in / Sign up

Export Citation Format

Share Document