A Novel Fault Tree Analysis Theory

2013 ◽  
Vol 779-780 ◽  
pp. 1711-1714
Author(s):  
Yuan Liang Huang ◽  
Jia Qi Zhong

A novel fault tree analysis theory is introduced for the ambiguity in complex systems. In the theory, the frequency grey number, which can express the events subjective ambiguity and objective ambiguity, is introduced to express the degree and probability that the components go wrong, dynamic envelope is applied to score the relation among components, and a new logic gate, Grey-gate, is advanced for expressing the effect of system reliability when the components go wrong. Finally, the theory is applied to analyze the fault effect of the system with software and hardware.

2013 ◽  
Vol 325-326 ◽  
pp. 590-593
Author(s):  
Fei Xiang Wei ◽  
Yang Song ◽  
Xiao Xu Ma ◽  
Ying Qian

The transmission line is an important part of the power system, its reliability will directly affect the reliability of the power system. The reliability of the overhead line plays a crucial role for the power system reliability. This paper analyze the reasons of the falling of the overhead lines, establish a fault tree, and make qualitative and quantitative analysis of the fault tree.


1977 ◽  
Vol 72 (358) ◽  
pp. 482 ◽  
Author(s):  
Robert G. Easterling ◽  
R. E. Barlow ◽  
J. B. Fussel ◽  
N. D. Singpurwalla

2018 ◽  
Vol 17 (01) ◽  
pp. 107-118 ◽  
Author(s):  
Hamed Fazlollahtabar ◽  
Seyed Taghi Akhavan Niaki

In this paper, minimal paths and cuts technique is developed to handle fault tree analysis (FTA) on the critical components of industrial robots. This analysis is integrated with the reliability block diagram (RBD) approach in order to investigate the robot system reliability. The model is implemented in a complex advanced manufacturing system having autonomous guided vehicles (AGVs) as material handling devices. FTA grants cause and effects and hierarchical properties to the model. On the other hand, RBD simplifies the complex system of the AGVs for reliability evaluation. The results show that due to the filtering of the paths in a manufacturing system for AGVs, the reliability is highly dependent on the mostly occupied paths by AGVs. The failure probability for the AGV is considered to follow the exponential probability distribution and thus the whole system reliability using minimal paths and cuts method is obtained 0.8741.


Kerntechnik ◽  
2021 ◽  
Vol 86 (2) ◽  
pp. 164-172
Author(s):  
R. A. Fahmy ◽  
R. I. Gomaa

Abstract The safe and secure designs of any nuclear power plant together with its cost-effective operation without accidents are leading the future of nuclear energy. As a result, the Reliability, Availability, Maintainability, and Safety analysis of NPP systems is the main concern for the nuclear industry. But the ability to assure that the safety-related system, structure, and components could meet the safety functions in different events to prevent the reactor core damage requires new reliability analysis methods and techniques. The Fault Tree Analysis (FTA) is one of the most widely used logic and probabilistic techniques in system reliability assessment nowadays. The Dynamic fault tree technique extends the conventional static fault tree (SFT) by considering the time requirements to model and evaluate the nuclear power plant safety systems. Thus this paper focuses on developing a new Dynamic Fault Tree for the Auxiliary Feed-water System (AFWS) in a pressurized water reactor. The proposed dynamic model achieves a more realistic and accurate representation of the AFWS safety analysis by illustrating the complex failure mechanisms including interrelated dependencies and Common Cause Failure (CCF). A Simulation tool is used to simulate the proposed dynamic fault tree model of the AFWS for the quantitative analysis. The more realistic results are useful to establish reliability cantered maintenance program in which the maintenance requirements are determined based on the achievement of system reliability goals in the most cost-effective manner.


2013 ◽  
Vol 421 ◽  
pp. 878-882
Author(s):  
Adriána Libošvárová ◽  
Peter Schreiber ◽  
Oliver Moravčik

The main goal of the paper is to provide a drawn up methodic for proposal of technical system optimization in terms of maximizing its reliability at given sum of financial costs or minimizing finance to achieve set reliability. The system reliability, respectively causal relationships between system failures and its elements faults are analyzed and illustrated by using special method called fault tree analysis (FTA) and technical system is represented by fault trees. Subsequently, the genetic algorithms are appropriately applied on the constructed diagram. The part of this paper is the proposal and description of individual steps of genetic algorithm in order to optimize fault tree analysis.


2013 ◽  
Vol 760-762 ◽  
pp. 1317-1321
Author(s):  
Qi Gui Yao ◽  
Hai Yu ◽  
Yue Yu ◽  
Wei Wang

The method of fault tree analysis is an important method for complex system reliability analysis of large scale. Fiber-access devices monitoring system is an important system of electric power communication transmission. Firstly it introduces the method of fault tree analysis, and then use the fault tree modeling technique for the fault tree to model refers to the fault of optical access equipment monitoring system, and carries on the qualitative analysis and quantitative analysis. It provides theoretical basis for system improvement and maintenancs.


2010 ◽  
Vol 139-141 ◽  
pp. 2587-2590 ◽  
Author(s):  
Xiao Nan Zhang ◽  
An Xin Liu ◽  
Qing Zhen Gao ◽  
Xing Qing ◽  
Xing Chang

It exists in complexity and fuzziness in structure and failure character of engineering machinery complex system. To solve the problem, fuzzy theory was introduced into fault tree analysis, and then the steps, principles and methods of fuzzy fault tree are determined. Based on the analysis of engineering machinery typical engine systemic structure and fault criterion, a fuzzy fault tree is established. Used a fuzzy mathematics method of reliability analysis with fuzzy fault rate and the median method of fuzzy significance analysis, the fuzzy fault rate and fuzzy significance of parts and subsystems is calculated. The result indicates that this method can solve the fuzziness problem of failure criterion and data in fault tree analysis. The result provides valuable reference for the reliability analysis.


Author(s):  
Jonas Pavasson ◽  
Magnus Karlberg

The possibility of estimating reliability of hardware, both for components and systems, is important in engineering design, since many failures result in substantial impact on safety or functional requirements. Existing reliability estimation methods require measured or estimated input data which can be difficult to retrieve. The objective of this paper is therefore to derive a simulation-driven method, including variation management, for combining deterministic simulations with Fault Tree Analysis, to estimate system reliability when measured data is not available. The research work started with a literature survey followed by description of a typical as-is situation and definition of a to-be scenario. Then, a simulation-driven method was derived and verified by a case study. In particular, the system used for the case study was modeled and simulated as a transient dynamical system to derive information about loads on components. It was found that deterministic simulations can be used to produce relevant input data for fault tree analysis. The derived simulation-driven system reliability estimation method includes variation management and can be used for evaluation of concepts in the early stages of product development when limited measurement data is available.


Sign in / Sign up

Export Citation Format

Share Document