Thermoelectric Properties of PbTe

2013 ◽  
Vol 802 ◽  
pp. 223-226 ◽  
Author(s):  
Sunti Phewphong ◽  
Tosawat Seetawan

The PbTe has been prepared by pressing and annealing method in argon atmosphere. The PbTe sample was obtained single phase and cubic structure. The Seebeck coefficient, the electrical resistivity, thermal conductivity measured by steady state method and evaluated dimensionless figure merit at room temperature. The values of Seebeck coefficient, the electrical resistivity, thermal conductivity and dimensionless figure merit are about -260 µV/K, 3 mΩcm, 0.5 W/m K and ~ 0.35 respectively at 420 K.

2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2006 ◽  
Vol 980 ◽  
Author(s):  
Ken Kurosaki ◽  
Takeyuki Sekimoto ◽  
Kenta Kawano ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractPolycrystalline ingots of the lanthanide based ternary intermetallics: LaNiSb, GdNiSb, ErNiSb and ErPdSb were prepared and characterized. The thermoelectric properties of ErNiSb and ErPdSb were measured at high temperatures. We succeeded in preparing the single phase ingots of ErNiSb and ErPdSb, while the ingots of LaNiSb and GdNiSb contain appreciable quantities of the impurity phases. ErNiSb and ErPdSb crystallize the MgAgAs-type structure (half-Heusler structure). ErNiSb and ErPdSb indicate positive values of the Seebeck coefficient. The values at room temperature are 36 and 240 micro VK-1 for ErNiSb and ErPdSb, respectively. The electrical resistivity of ErNiSb and ErPdSb decreases with temperature, indicating semiconductor-like behavior. ErPdSb exhibits a relatively large power factor 1.5x10-3 Wm-1K-2 at around 700 K, which is approximately two times larger than that of ErNiSb.


2007 ◽  
Vol 124-126 ◽  
pp. 1019-1022 ◽  
Author(s):  
K.W. Jang ◽  
Il Ho Kim ◽  
Jung Il Lee ◽  
Good Sun Choi

Non-stoichiometric Zn4-xSb3 compounds with x=0~0.5 were prepared by vacuum melting at 1173K and annealing solidified ingots at 623K. Electrical resistivity and Seebeck coefficient at 450K increased from 1.8cm and 145K-1 for Zn4Sb3(x=0) to 56.2cm 350K-1 for Zn3.5Sb3(x=0.5) due to the decrease of the carrier concentration. Hall mobility and carrier concentration was 31.5cm2V-1s-1 and 1.32X1020cm-3 for Zn4Sb3 and 70cm2V-1s-1 and 2.80X1018cm-3 for Zn3.5Sb3. Electrical resistivity of Zn4-xSb3 with x=0~0.2 showed linearly increasing temperature dependence, whereas those of Zn4-xSb3 with x=0.3~0.5 above 450 K tended to decrease. Thermal conductivity of Zn4Sb3 was 8.5mWcm-1K-1 at room temperature and that of Zn4-xSb3 with x≥0.3 was around 11mWcm-1K-1. Maximum ZT of Zn4Sb3 was obtained around 1.3 at 600K. Zn4Sb3 with x=0.3~0.5 showed very small value of ZT=0.2~0.3.


2007 ◽  
Vol 280-283 ◽  
pp. 397-400 ◽  
Author(s):  
Jing Liu ◽  
Jing Feng Li

Bi2Te3-based alloys are currently best-known, technological thermoelectric materials near room temperature. In this paper, Bi2Te3 and nano-SiC dispersed Bi2Te3 were prepared by mechanical alloying followed by spark plasma sintering (SPS). Raw powders of Bi, Te and SiC were mixed and mechanically alloyed in an argon atmosphere using a planetary ball mill. The SPS temperature was 623K, and the holding time was 5 minutes. The samples were characterized by X-ray Diffraction (XRD) and Scanning electron Microscope (SEM). The thermoelectric properties: i.e. Seebeck coefficient, electrical resistivity and thermal conductivity were measured at temperatures from room temperature to 573K, followed by the evaluation of figure of merit. The results revealed that the SiC dispersion in the Bi2Te3 matrix increased Seebeck coefficient. Although the electrical resistivity was increased somewhat, the thermal conductivity was reduced by the SiC dispersion, indicating that promising thermoelectric materials with enhanced mechanical properties may be obtained in the nano-SiC dispersed Bi2Te3 composites with optimal compositions.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Yoshisato Kimura ◽  
Yukio Tamura ◽  
Takuji Kita

AbstractIn order to evaluate the thermoelectric properties of n-type half-Heusler compound NbCoSn, single-phase NbCoSn alloy was prepared using directional solidification based on the phase diagram information of the Nb-Co-Sn ternary system which was investigated in this work. The isotherm at 1273 K and the reaction scheme together with the projection of liquidus surface were determined. Thermoelectric properties of NbCoSn based alloys were evaluated by Seebeck coefficient, electrical resistivity and power factor, which were measured in a temperature range from room temperature to 1073 K. NbCoSn has excellent values of Seebeck coefficient exceeding -250 μV/K at around 900 K and shows the metal-like temperature dependence of electrical resistivity.


2012 ◽  
Vol 1456 ◽  
Author(s):  
Kevin C. Lukas ◽  
Huaizhou Zhao ◽  
Ryan L. Stillwell ◽  
Zhifeng Ren ◽  
Cyril P. Opeil

ABSTRACTBismuth-Antimony alloys have been shown to have high ZT values below room temperature, especially for single crystals. For polycrystalline samples, impurity doping and magnetic field have proven to be powerful tools in the search for understanding and improving thermoelectric performance. Nanopolycrystalline Bi0.88Sb0.12 doped with 0.05, 0.5 and 3 % Ce were prepared by ball milling and dc hot pressing techniques. Electrical resistivity, Seebeck coefficient, thermal conductivity, carrier concentration, mobility, and magnetization are measured in a temperature range of 5-350 K and in magnetic fields up to 9 Tesla. The effects of Ce doping on the thermoelectric properties of Bi0.88Sb0.12 in zero magnetic field are discussed.


2005 ◽  
Vol 886 ◽  
Author(s):  
Atsuko Kosuga ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

ABSTRACTPolycrystalline-sintered samples of Tl2GeTe3, Tl4SnTe3, and Tl4PbTe3 were prepared by a solid-state reaction. Their thermoelectric properties were evaluated at temperatures ranging from room temperature to ca. 700 K by using the measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ). Despite their poor electrical properties, the dimensionless figure of merit ZT of all the compounds was relatively high, i.e., 0.74 at 673 K for Tl4SnTe3, 0.71 at 673 K for Tl4PbTe3, 0.29 at 473 K for Tl2GeTe3, due to the very low lattice thermal conductivity of the compounds.


2013 ◽  
Vol 802 ◽  
pp. 218-222 ◽  
Author(s):  
Wanatchaporn Namhongsa ◽  
Tosawat Seetawan ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont

The polycrystalline of sodium cobalt oxide (Na0.5CoO2) was synthesized by solid state reaction method and sintering method. The microstructure was composed of powder size and crystal structure. The Seebeck coefficient and electrical resistivity are measured. We found that the concentration of sodium ions sandwiched between two neighboring CoO2layers played a crucial role in transport properties. The results showed small particle size, single phase and orthorhombic structure. The Seebeck coefficient of Na0.5CoO2increased as the temperature increased. The electrical resistivity was decreased as temperature decreased from the range 300-500 K.


Sign in / Sign up

Export Citation Format

Share Document