Prediction of the Heat-Insulating Crumb Rubber Brick Walls Design by the Finite Element Method

2013 ◽  
Vol 805-806 ◽  
pp. 1575-1582 ◽  
Author(s):  
Weerapol Namboonruang ◽  
Rattanakorn Rawangkul ◽  
Wanchai Yodsudjai ◽  
Trakool Aramraks ◽  
Nutthanan Suphadon

Nowadays, materials used to construct house or building wall areconsidered not only in the physical material behaviour but also energy conscious and economic factor. Adding crumb rubber to the brick composite is one of many methods to develop the properties of bricks. As widely known,the finite element method (FEM) is a tool used for finding accurate solutions of the heat transfer equation of materials including the composite bricks. In this paper an investigation of the heat transfer of a soil cement brick containing crumb rubber particles, is presented and compared to results of finite element analysis (FEA) simulation. To determine the effect of crumb rubber to the heat transfer behaviour of soil cement brick, different volume fractions are varied by 10, 20, 30 and 40%. It was reported that a modelling application reveals good correspondence with the experimental results.

2018 ◽  
Vol 280 ◽  
pp. 451-461
Author(s):  
Weerapol Namboonruang ◽  
Nutthanan Suphadon

Recently, materials used to construct house or building wall are considered not only in the physical material behaviour but also energy conscious and economic factor. The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing composite brick was investigated. It has been widely known that the finite element method (FEM) is a tool used for finding accurate solutions of the heat transfer equation of materials including the composite bricks. In this work, study of the heat transfer of a composite brick containing rubber sludge waste (RSW) was showed and compared to results of finite element analysis (FEA) simulation. To determine the effect of rubber sludge waste to the heat transfer behaviour of composite brick with different volume fractions are varied by 10, 20, 30, 40 and 50%. It appeared that a FEA prediction showed good correspondence with the experimental results.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The concept of the finite-element procedure may be dated back to 1943 when Courant approximated the warping function linearly in each of an assemblage of triangular elements to the St. Venant torsion problem and proceeded to formulate the problem using the principle of minimum potential energy. Similar ideas were used later by several investigators to obtain the approximate solutions to certain boundary-value problems. It was Clough who first introduced the term “finite elements” in the study of plane elasticity problems. The equivalence of this method with the well-known Ritz method was established at a later date, which made it possible to extend the applications to a broad spectrum of problems for which a variational formulation is possible. Since then numerous studies have been reported on the theory and applications of the finite-element method. In this and next chapters the finite-element formulations necessary for the deformation analysis of metal-forming processes are presented. For hot forming processes, heat transfer analysis should also be carried out as well as deformation analysis. Discretization for temperature calculations and coupling of heat transfer and deformation are discussed in Chap. 12. More detailed descriptions of the method in general and the solution techniques can be found in References [3-5], in addition to the books on the finite-element method listed in Chap. 1. The path to the solution of a problem formulated in finite-element form is described in Chap. 1 (Section 1.2). Discretization of a problem consists of the following steps: (1) describing the element, (2) setting up the element equation, and (3) assembling the element equations. Numerical analysis techniques are then applied for obtaining the solution of the global equations. The basis of the element equations and the assembling into global equations is derived in Chap. 5. The solution satisfying eq. (5.20) is obtained from the admissible velocity fields that are constructed by introducing the shape function in such a way that a continuous velocity field over each element can be denned uniquely in terms of velocities of associated nodal points.


Author(s):  
Benjamin Hantz ◽  
Venkata M. K. Akula ◽  
John Leroux

For pressure vessels, loss of thickness detected during scheduled maintenance utilizing UT scans can be assessed based on Level 1 or 2 analyses as per API 579 guidelines. However, Level 1 and 2 analyses can point to excessively conservative assessments. Level – 3 assessments utilizing the finite element method can be performed for a more accurate estimate of the load carrying capacity of the corroded structure. However, for a high fidelity structural response prediction using the finite element method, the characteristics of the model must be accurately represented. Although the three nonlinearities, namely, the geometric, material, and contact nonlinearities can be adequately included in a finite element analysis, procedures to accurately include the thickness measurements are not readily available. In this paper, a tool to map thicknesses obtained from UT scans onto a shell based finite element models, to perform Level – 3 analyses is discussed. The tool works in conjunction with Abaqus/CAE and is illustrated for two different structures following the elastic-plastic analysis procedure outlined in the API 579 document. The tool is intended only as a means to reduce the modeling time associated with mapping thicknesses. The results of the analyses and insights gained are presented.


1983 ◽  
Vol 14 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Tilahun Aberra

The numerical solution of the behaviour of discrete time steps in digital computer analysis of square aquifers containing pumped wells is examined by using the finite element method with a 4 node linear quadrilateral isoparametric surface element. A wide range of time steps are used in the computation. The calculations show that discrete time steps can cause errors and oscillations in the calculations particularly when wells start and stop pumping. Comparison with known results obtained by theoretical and finite difference procedures has been considered. The main objective of this paper is to demonstrate comparison of the finite element and finite difference simulation results over a regular linear 4 node quadrilateral mesh suitable to represent the two numerical schemes with a marked similarity. The dimensionless time drawdown results of the finite element method agreed well with the finite difference and analytical results for small time increment. However, for large time increments, there are from slight to significant oscillations in the results and notable discrepancies are observed in the solutions of the two numerical methods.


Sign in / Sign up

Export Citation Format

Share Document