Mechanical and Physical Properties of Particle Board Made from Silaned and NaOH Modified Kelampayan (Neolamarckia cadamba) Particles

2013 ◽  
Vol 812 ◽  
pp. 169-174
Author(s):  
Azizul Ishak ◽  
Siti Rafedah A. Karim ◽  
Hashim W. Samsi

The objective of this study is to determine the mechanical and physical properties of Particleboard made from modified particle of Kelampayan (Neolamarckia cadamba). The particles were modified with Silane and Sodium Hydroxide (NaOH) by soaked the particle for 24 hours with different ratio ( Kelampayan + Silane, Kelampayan + NaOH, and Kelampayan + Silane + NaOH). The result showed that the mechanical and dimensional stability of the treated wood were improved. Particleboard made from 0.8 mesh particles treated with Silane and NaOH were highest value of bending strength modulus of rapture (MOR) 22.89MPa, modulus of elasticity (MOE) 3916.88MPa and Internal Bond properties 0.48214 MPa whereby particleboard made from 0.5 mesh particles treated by Silane were highest value for bending strength (MOR) 15.75MPa, MOE 2905.34 and Internal Bond properties 0.5748MPa.Outcome of this proposed research will provided valuable databases to the wood based industry to use Kelampayan as an alternative raw material in their down streams production such as particleboard, medium-density board and chipboard manufacturing.

2019 ◽  
Vol 105 ◽  
pp. 113-124
Author(s):  
ANITA WRONKA ◽  
GRZEGORZ KOWALUK

Selected properties of particleboard made of raspberry Rubus idaeus L. lignocellulosic particles. The aim of the research was to confirm the possibility of using lignocellulosic particles of raspberry Rubus idaeus L. stalks as an alternative raw material in particleboard technology. Within the scope of work, it was to produce particleboards from raspberry lignocellulosic particles in laboratory conditions, and to investigate selected mechanical and physical properties of the produced boards. In addition to the aforementioned tests, the characterization of the lignocellulosic raw material used in the tests (density, bark share, fractional composition) was carried out. The tests have shown that it is possible to produce the furniture particleboards with use the lignocellulosic particles of raspberry Rubus idaeus L. To meet the requirements of the European standards for furniture panels, such particleboards must contain less than 50% of raspberry particles with density 650 kg/m3 (due to the bending strength criterion).


2018 ◽  
Vol 77 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Sauro Bianchi ◽  
Heiko Thömen ◽  
Stefan Junginger ◽  
Frédéric Pichelin

2018 ◽  
Vol 28 (4) ◽  
pp. 138-148
Author(s):  
Arkadiusz Denisiewicz ◽  
Tomasz Socha ◽  
Krzysztof Kula ◽  
Marcin Pasula

Abstract The article presents results of laboratory tests of selected mechanical and physical properties of fine-grained fiber concrete. Tests were conducted on samples with a different degree of reinforcement made on the basis of steel and polypropylene fibers. For the designed concrete mixtures and prepared samples, slump class, shrinkage, compressive and bending strength and water tightness were determined.


2017 ◽  
Vol 25 (0) ◽  
pp. 24-29
Author(s):  
Daiva Mikučioniené ◽  
Lina Čepukonė

Natural and man-made fibres of natural origin are more and more widely used, while consideration of sustainability is constantly increasing. The properties and processing behaviour of newly introduced fibres of natural origin are usually compared and often predicted on the basis of widely investigated fibres; however, this prediction sometimes does not have any confirmed basis. Structural parameters and the majority of mechanical and physical properties of knitted fabrics depend on technical characteristics of the knitting machine, on the properties of yarns as well as on the origin of the raw material. This study attempts to develop knits from new natural peat fibres and their combination with widely used woollen, cotton and elastomeric Lycra yarns and to investigate the influence of peat fibre’s nature on structural parameters such as loop length, wale and course spacing, area density, the tightness factor and on main physical properties such as dimensional stability, air permeability and water adsorption.


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 354
Author(s):  
Pedro Lício Loiola ◽  
Ricardo Jorge Klitze ◽  
Márcio Pereira Rocha ◽  
Graziela Baptista Vidaurre

The behavior of the physical properties of wood is important for its use in the industrial sector. Manufacturing for pencil production requires raw material with low specific mass and high dimensional stability. The objective of this study was to evaluate the properties of the physical specific basic mass properties, anhydrous and green, as well as the retractability of the 14 years old Pinus caribaea var. caribaea, 25 years old Pinus caribaea var. hondurensis and 35 years old Pinus oocarpa in the medulla sense of the bark, base and top of the trees. All species come from the Brazilian Cerrado region afforestation. As for dimensional stability, the Pinus caribaea var. caribaea and Pinus oocarpa had similar behaviors to the volumetric contraction, when evaluating the coefficient of anisotropy of wood species of Pinus caribaea var. caribaea had higher values of anisotropy coefficient, however, all tropical pine studied, qualify as a raw material for the pencil industry, being an alternative species traditionally used.


2007 ◽  
Vol 37 (5) ◽  
pp. 866-873 ◽  
Author(s):  
Jun Li Shi ◽  
Bernard Riedl ◽  
James Deng ◽  
Alain Cloutier ◽  
S. Y. Zhang

Mechanical and physical properties of medium-density fibreboard (MDF) panels made from black spruce ( Picea mariana (Mill.) BSP) top, middle, and butt logs were studied. The analysis of variance and analysis of covariance were both performed to examine the impact of log position in the tree on panel modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), linear expansion (LE), thickness swell (TS), and water absorption. Results indicate that MOE and IB strength of MDF panels made from top and middle logs were significantly superior to those of panels made from butt logs; however, there was no significant difference in MOE and IB between panels made from top and middle logs. Water absorptions of top and middle log panels were significantly lower than that of panels made from butt logs, and the difference in water absorption between panels made from top and middle logs was not significant. TS of top log panels was the smallest among the panels from the three log positions in the tree and was significantly different from those of middle and butt log panels. TS of butt log panels was the highest, which was significantly different from that of top and middle log panels. The differences in LE among the panels made from top, middle, and butt logs were not significant. The comparison of MOR of top, middle, and butt log panels was dependent on panel density because of the interactions among the three groups. Top and middle log panels showed superior properties, because the thinner cell walls of fibres from top and middle logs resulted in an increased compaction ratio compared with the butt log panels. Panel density affected both panel MOR and MOE considerably; however, its impact on IB, LE, TS, and water absorption was not significant in this study. The equations describing the linear relationships between MOR, MOE, and panel density were developed.


2014 ◽  
Vol 2 (1) ◽  
pp. 16-22
Author(s):  
Mohd Aminuddin Che Haron ◽  
Suhaimi Muhammed ◽  
Abdul Hamid Saleh

Bamboo is considered as environmentally and eco-friendly material compared to hardwood and nowadays bamboo veneer is getting very popular in the market. Bamboo veneer is suitable for many modern designs. The alternate layers of veneer bamboo (3 and 5 layers) were combined with fiberglass by using Epoxy resin (2% hardener) as bonding agent to produce PBFC at different pressure. Panels produced were assessed for the mechanical and physical properties such as MOE and MOR, thickness swelling (TS), and water absorption (WA) in accordance with the European Standard. Results revealed that strength performance of board improved with increasing pressure. Thickness swelling and water absorption values were much lower for the 5 layer composite Thus such findings revealed that bamboo veneer from Buluh betong possess great potential for the manufacture of bio-composite products.


Nativa ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 177
Author(s):  
Talita Baldin ◽  
Maiara Talgatti ◽  
Amanda Grassamann da Silveira ◽  
Bruna Gabrieli Resner ◽  
Elio José Santini

O objetivo do presente trabalho foi avaliar o potencial de uso de partículas de resíduos de embalagens cartonadas e partículas de Eucalyptus grandis para a fabricação de compósitos, colados com adesivo à base de ureia-formaldeído. Foram utilizadas cinco diferentes proporções de madeira de E. grandis e embalagens cartonadas. As partículas de madeira e embalagens cartonadas foram produzidas em laboratório. A avaliação da qualidade dos compósitos envolveu a caracterização da geometria das partículas, das propriedades físicas: massa específica básica, teor de umidade de equilíbrio, absorção de água e inchamento em espessura após 2 e 24 horas de imersão em água e das propriedades mecânicas: flexão estática (MOE e MOR), resistência ao arrancamento de parafuso, ligação interna e dureza Janka. A incorporação de partículas de embalagens cartonadas proporcionou uma melhoria nas propriedades físicas em relação aos compósitos puros de madeira. Já para as propriedades mecânicas, compósitos com até 50% de embalagens cartonadas obtiveram melhores resultados, no entanto, a incorporação a partir de 75% ocasionou decadência nessas propriedades. Compósitos de madeira de E. grandis e embalagens cartonadas apresentaram potencial para utilização em ambientes internos e podem ser uma alternativa para a produção de compósitos sustentáveis e de boa qualidade.Palavra-chave: materiais sustentáveis, propriedades físicas e mecânicas, ureia-formaldeído. CARTONBOARD PACKAGING AS A RAW MATERIAL IN THE MANUFACTURE OF COMPOSITES ABSTRACT:The aim of this study was to evaluate the potential waste particles use of carton packaging and particles of E. grandis for the manufacture of particle boards, bonded with urea-formaldehyde-based adhesive. Five different proportions of E. grandis wood and cartons have been used. The wood particles and cartons were produced in the laboratory. The quality assessment panels involved characterizing the geometry of the particles, the physical properties: specific gravity, equilibrium moisture content, water absorption and thickness swelling after 2 and 24 hours of immersion in water and mechanical properties: flexural static (MOR and MOE), resistance to screw pullout, internal bond and Janka hardness. The incorporation of particulate cartons provided an improvement in physical properties relative to pure wood panels. As for the mechanical properties, panels of up to 50 % of cartons obtained best results, however, incorporating from 75 % decay caused these properties. The wood particleboard of E. grandis and cartons showed potential for use indoors and become an alternative for producing sustainable panels and of good quality.Keywords: sustainable materials, physical-mechanical properties; urea-formaldehyde. DOI:


2019 ◽  
Vol 43 (5) ◽  
Author(s):  
Morgana Cristina França ◽  
Alexsandro Bayestorff da Cunha ◽  
Caio Cesar Faedo de Almeida ◽  
Bruna Laís Longo ◽  
Willian Grubert

ABSTRACT The objective of this study was to evaluate the technical feasibility of producing particleboard from oversize resin fibers in a reduced proportion of adhesive. It was used as raw material, oversize resin fibers discarded from the MDF (Medium Density Fiberboard) production process, flake particles of Pinus spp. derived from an MDP (Medium Density Particleboard) company’s chipper and adhesive formed by the urea-formaldehyde resin and paraffin emulsion. The experiment consisted of five treatments, mixing particles and fibers in different proportions (100: 0%; 75: 25%; 50: 50%; 25: 75%; 0: 100%). Three panels were produced per treatment, with nominal density of 650 kg.m-3, 8% resin and pressing cycle of 160ºC, 40 kgf.cm-2 for 8 minutes. The properties of the panels were evaluated by the procedures described in ASTM D-1047 (1993), DIN 53362 (1982) and ABNT / NBR 14810 (2013). The results showed that oversize resin fibers have potential for use in the sector, especially in quantities above 75%, a fact that was evidenced by the values found for dimensional stability and strength/stiffness. For internal adhesion, the increase in the number of fibers above 25% was not significant.


Sign in / Sign up

Export Citation Format

Share Document