scholarly journals Comparative Analysis of Knits from Peat Fibre and its Combinations with Other Natural Fibres

2017 ◽  
Vol 25 (0) ◽  
pp. 24-29
Author(s):  
Daiva Mikučioniené ◽  
Lina Čepukonė

Natural and man-made fibres of natural origin are more and more widely used, while consideration of sustainability is constantly increasing. The properties and processing behaviour of newly introduced fibres of natural origin are usually compared and often predicted on the basis of widely investigated fibres; however, this prediction sometimes does not have any confirmed basis. Structural parameters and the majority of mechanical and physical properties of knitted fabrics depend on technical characteristics of the knitting machine, on the properties of yarns as well as on the origin of the raw material. This study attempts to develop knits from new natural peat fibres and their combination with widely used woollen, cotton and elastomeric Lycra yarns and to investigate the influence of peat fibre’s nature on structural parameters such as loop length, wale and course spacing, area density, the tightness factor and on main physical properties such as dimensional stability, air permeability and water adsorption.

2018 ◽  
Vol 26 (4(130)) ◽  
pp. 59-66
Author(s):  
Erhan Kenan Çeven ◽  
Gizem Karakan Günaydin

Recently there have been new trends in fancy yarns in order to meet consumer demands for drapery, decorative and outwear fabrics. Macaroni yarns are a promising group of fancy yarn which allows new yarn designs with different raw materials at different yarn counts. In the study, supreme knitted fabrics were produced with macaroni yarns of different raw materials (polyester, acyclic, cotton) at different yarn counts (Nm 2/1, Nm 2.5/1, Nm 3.3/1, Nm 4/1 and Nm 4.5/1). Completely randomised one-factor analysis of variance (ANOVA) was used for determination of the statistical significance of the fabric type on selected physical properties of knitted macaroni fabrics in terms of fabric weight (g/m2), dimensional change (%) in the wale and course direction, abrasion resistance, and air permeability properties before and after the washing process. According to the results of the statistical analyses performed using the experimental values obtained from the tests, we determined that the fabric weights (g/m2), dimensional changes (%) in the wale and course direction, abrasion resistance and air permeability properties before and after washing were significantly influenced by the macaroni yarn’s structural parameters (such as the yarn count and raw material comprising it).


2017 ◽  
Vol 12 (1) ◽  
pp. 155892501701200
Author(s):  
Züleyha Değirmenci ◽  
Ebru Çoruh

This paper reports the effect of loop length and raw material on the air permeability and the bursting strength of plain knitted fabrics. In this study, a series of plain knitted fabrics were produced on a circular knitting machine with cotton, polyester, acrylic and viscose by Ne 30/1 yarns. Each fabric type was produced with four different stitch lengths. All the fabrics were knitted at the same machine setting in order to determine the effect of their structure on the fabric properties. Their geometrical and physical properties were experimentally investigated. The influences of the loop length and the raw material on the number of the courses per cm, number of the wales per cm, loop shape factor, thickness, fabric unit weight, tightness factor, air permeability and bursting strength are analyzed. Statistical analysis indicates that raw material and loop length significantly parameters affect the air permeability and the bursting strength properties of the fabrics.


2017 ◽  
Vol 17 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Anindya Ghosh ◽  
Prithwiraj Mal ◽  
Abhijit Majumdar ◽  
Debamalya Banerjee

Abstract Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.


2019 ◽  
Vol 105 ◽  
pp. 113-124
Author(s):  
ANITA WRONKA ◽  
GRZEGORZ KOWALUK

Selected properties of particleboard made of raspberry Rubus idaeus L. lignocellulosic particles. The aim of the research was to confirm the possibility of using lignocellulosic particles of raspberry Rubus idaeus L. stalks as an alternative raw material in particleboard technology. Within the scope of work, it was to produce particleboards from raspberry lignocellulosic particles in laboratory conditions, and to investigate selected mechanical and physical properties of the produced boards. In addition to the aforementioned tests, the characterization of the lignocellulosic raw material used in the tests (density, bark share, fractional composition) was carried out. The tests have shown that it is possible to produce the furniture particleboards with use the lignocellulosic particles of raspberry Rubus idaeus L. To meet the requirements of the European standards for furniture panels, such particleboards must contain less than 50% of raspberry particles with density 650 kg/m3 (due to the bending strength criterion).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jolita Krisciunaite ◽  
Brigita Kalendraite ◽  
Lina Ragelienė ◽  
Evelina Merkelyte ◽  
Daiva Mikucioniene

Abstract Antimicrobial finishing is increasingly used in textile products to increase their functionality. Antimicrobial properties became extremely important during the COVID-19 situation. The main problems faced by antimicrobial finishing are nontoxicity and durability (wash-resistance) of antibacterial activity. Also, it is important to determine whether the antimicrobial finishing changes comfort properties, such as air permeability. This paper deals with the durability of antimicrobial treatment, that is, resistance to washing, and effect on the structural changes that may have influence on the comfort properties, such as permeability to air. Knits of various raw compositions were antimicrobial-treated with the new commercial antimicrobial product, Si Bactericidal (Smart Inovation, Portugal). After the antimicrobial treatment, knitted specimens were washed 50 times and changes in their structural parameters, air permeability, and antimicrobial activity were measured. It was found that the mentioned antimicrobial treatment gives very good antimicrobial activity to the treated fabric and is wash-resistant and long-lasting. Also, it does not change dimensions and permeability to air of the treated fabrics with some exceptions of cotton-based knitted structures.


2020 ◽  
Vol 27 (120) ◽  
pp. 243-251
Author(s):  
Esra TAŞTAN ÖZKAN ◽  
Binnaz KAPLANGİRAY

In this study, it is aimed to change the loop length of knitted fabrics with a mesh structure and to investigate the effect of loop length differences on thermal and moisture transmission properties. For this purpose, six fabrics with different loop lengths were produced in two different knittings and yarn types. Thermal conductivity, thermal absorptivity, thermal resistance, air permeability and moisture management properties of these fabrics were measured according to standard test methods. The results showed that as the yarn gets finer and loop length increases, the air permeability values will increase. It was observed that as the loop length increase, the overall moisture management capacity (OMMC) and thermal absorptivity of the fabrics will decrease. The thermal resistance values of two ply textured polyester mesh knitted fabrics decreased with increasing density and the highest loop length two ply textured polyester mesh knitted fabric showed the highest thermal resistance value.


Author(s):  
Mohamed Ghaith Chakroun ◽  
Sofien Benltoufa ◽  
Faten Fayala

Many parameters affect sportswear comfort. Therefore, we selected five sportswear fabrics designed for jogging and hiking T-shirts to study their structural characteristics and to investigate the influence of these characteristics on the clothing comfort properties. The areal weight, the thickness, the loop length and the course and wales densities were calculated. Investigations were performed on air permeability, water vapor resistance and drying time/rate properties of selected fabrics. We found that an increase in the mass per square meter and in thickness decreases the air permeability and increases the water vapor resistance of knitted fabrics. The air permeability is proportional to the loop length, while the water vapor resistance is inversely proportional to the loop length. Finally we did not find any significant relation between the fabric’s structure characteristics and the drying time/rate.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2096250
Author(s):  
Masturi ◽  
WN Jannah ◽  
RM Maulana ◽  
T Darsono ◽  
Sunarno ◽  
...  

A teak leaf waste/polyurethane composite has been made for particleboard application. Some fraction variations are performed on the use of polyurethane as a matrix with a range of 0.04–0.20 (w/w). Mechanical and physical properties have been tested on the composites produced. The test results showed that the highest compressive strength of the sample reaches 38.5 MPa for polyurethane fraction of 0.14 (w/w). The composite has a density of 1261 kg m−3 which is in accordance with the result of density on teak. The physical properties have been also investigated and it was found that the lowest value of water absorption is 1.38%. This result indicated that the composites produced are potentially to replace wood raw material in eco-friendly industrial scale.


2014 ◽  
Vol 9 (2) ◽  
pp. 155892501400900
Author(s):  
P. Kanakaraj ◽  
R. R. Ramachandran ◽  
B.S. Dasaradan

The loop transfer technique was used to develop the a splitable multi layer knit fabric on a computerized multi gauge flat knitting machine. The fabric consists of three layers: inner-single jersey, middle-1×1 purl and, outer-single jersey. By varying the loop length the multi layer knit fabric samples were produced, namely CCC-1, CCC-2 and CCC-3. The above multi layer fabrics were knitted using 24s Ne cotton of combined yarn feed in feeders 3, 4, and 4 respectively. The influence of loop length on wpc, cpc and tightness factor was studied using linear regression. The water vapor and air permeability properties of the produced multi layer knit fabrics were studied using ANOVA. The change of raw material in three individual layers could be useful for the production of fabric for functional, technical, and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document