pressing cycle
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Ivo Valchev ◽  
Yvailo Yordanov ◽  
Viktor Savov ◽  
Petar Antov

This research was aimed at studying the potential of using residual lignin from acid hydrolysis as a binder in manufacturing eco-friendly, dry-process fibreboards. For that purpose, a modification of the adhesive system and hot-pressing regime was conducted. The adhesive system applied was composed of 2 % phenol-formaldehyde (PF) resin and 10 % hydrolysis lignin (based on the dry fibres). The PF resin does not only act as a binder but generally contributes to the even distribution and good retention of the main binder – hydrolysis lignin. A specific hot-pressing cycle was used. In the first stage, the pressure was 1.0 MPa, followed by an increased pressure of 4.0 MPa, and subsequent cooling. The purpose of the initial lower pressure was softening the lignin and reduction of the material moisture content. The effect of the second stage of hot-pressing on the properties of eco-friendly fibreboards was investigated. It was determined that the fibreboards produced with 2 % PF resin and 10 % hydrolysis lignin have similar physical and mechanical properties to those of the control panels, produced with 10 % PF resin at a standard hot-pressing cycle. The findings of this work demonstrate that residual hydrolysis lignin can be effectively utilized as a binder in the production of eco-friendly, dry-process fibreboards with acceptable physical and mechanical properties.



2020 ◽  
Vol 10 (17) ◽  
pp. 5810
Author(s):  
Ting An Lin ◽  
Jia-Horng Lin ◽  
Limin Bao

With appropriate conditions, thermoplastic materials possess a good reversible ability. They are prone to exceed the reversibility range when being repeatedly processed as they cannot bear high temperatures. Therefore, this study aims to explore the impacts of the melting–recycling cycles and the presence of a compatibilizer on the omnipresent thermoplastic materials. Additionally, the tensile properties, morphology, and thermal properties are studied. The feasibility of multiple utilizations and differentiation effects are examined afterward. In this study, recycled or mechanically damaged thermoplastic polyurethane (T)/polypropylene (P) waste blends are used as the raw materials for the hot-pressing cycle, while maleic anhydride grafted polypropylene (MA) is used as the compatibilizer, thereby simulating the waste compounds. Next, the T/P/MA blends that undergo post-2nd and post-3rd recycling are evaluated for comprehensive change. The test results indicate that without MA, T/P blends exhibit significant differentiation effects due to an increase in the polypropylene content and multiple melting–recycling cycles. By contrast, the presence of MA mitigates the overall differentiation effect of T/P blends. The ultimate purpose of this study is to treat waste compounds via a simple hot-pressing approach to produce useful materials that can be used again. As a result, this study attenuates the negative influences of plastic waste on the environment while achieving sustainable development.



2019 ◽  
Vol 43 (5) ◽  
Author(s):  
Morgana Cristina França ◽  
Alexsandro Bayestorff da Cunha ◽  
Caio Cesar Faedo de Almeida ◽  
Bruna Laís Longo ◽  
Willian Grubert

ABSTRACT The objective of this study was to evaluate the technical feasibility of producing particleboard from oversize resin fibers in a reduced proportion of adhesive. It was used as raw material, oversize resin fibers discarded from the MDF (Medium Density Fiberboard) production process, flake particles of Pinus spp. derived from an MDP (Medium Density Particleboard) company’s chipper and adhesive formed by the urea-formaldehyde resin and paraffin emulsion. The experiment consisted of five treatments, mixing particles and fibers in different proportions (100: 0%; 75: 25%; 50: 50%; 25: 75%; 0: 100%). Three panels were produced per treatment, with nominal density of 650 kg.m-3, 8% resin and pressing cycle of 160ºC, 40 kgf.cm-2 for 8 minutes. The properties of the panels were evaluated by the procedures described in ASTM D-1047 (1993), DIN 53362 (1982) and ABNT / NBR 14810 (2013). The results showed that oversize resin fibers have potential for use in the sector, especially in quantities above 75%, a fact that was evidenced by the values found for dimensional stability and strength/stiffness. For internal adhesion, the increase in the number of fibers above 25% was not significant.



2019 ◽  
Vol 49 (5) ◽  
Author(s):  
Alexsandro Bayestorff da Cunha ◽  
Willian Grubert ◽  
Martha Andreia Brand ◽  
Polliana D´Angelo Rios ◽  
Ugo Leandro Belini ◽  
...  

ABSTRACT: This paper aimed to evaluate the technological properties of particleboards produced with particles of unconventional species, bamboo of the species Phyllostachys edulis, and of the genus traditionally used by the sector for the production of the particulate panels in Brazil, Pinus spp.The bamboo splints of 3 years old were collected in Frei Rogério, Santa Catarina, being transformed into particles in a mill hammer, while the particles of Pinus spp. were collected from the industrial process of MDP production in Bonet Madeiras e Papéis Ltda Company in Santa Cecília, Santa Catarina. The company used eight-year-old logs of P. taeda and P. elliottii from the thinning process, without distinction of the species. The experiment was composed of five compositions with mixing the bamboo and wood particles in different proportions ((T1)100:0%; (T2)75:25%; (T3)50:50%; (T4)25:75%; (T5)0:100%). The panels were produced nominal density of 700 kg / m³ and pressing cycle of 160ºC and 40 kgf/cm² for 8 minutes. Results reporting physical and mechanical properties of panels were evaluated through Analysis of Variance and Tukey´s Test at 95% probability. The results evidenced that bamboo particles presented potential for the production of particleboard. The most promising results were presented with the addition of 50% of bamboo in the panel composition (T3), mainly by means observed for dimensional stability, as for strength and stiffness. Values of internal bond presented significantly lower averages with the addition of more than 25% of bamboo.



2018 ◽  
Vol 143 ◽  
pp. 01011 ◽  
Author(s):  
Evgeny Moskvichev ◽  
Alexander Kozulin ◽  
Vladimir Krasnoveikin ◽  
Vladimir Skripnyak

The results of theoretical estimation of capabilities of the material structure modification of 1560 aluminum alloy sheets under processing by severe plastic deformation are presented in this paper. Severe plastic deformation of flat specimens is effected by the constrained groove pressing method in original dies with trapezoidal teeth. The numerical simulation results of the sheet specimen treatment process by severe plastic deformation were used for dies designing. The stress-strain state of flat aluminum alloy specimens and the steel dies at high processing temperature, support reaction force during pressing and the degrees of plastic strain accumulation at the optimum mode of pressing were estimated. The main numerical result is the value of accumulated plastic strain in the specimen per one pressing cycle which is about 1.14. Large degrees of strain are the reasons of grain structure and material texture changes, which leads to inevitable change of its physical-mechanical properties. Increasing the number of pressing cycles leads to proportional increase of the degree of accumulated plastic strain.



2017 ◽  
Vol 46 (5) ◽  
pp. 399-407 ◽  
Author(s):  
Leipeng Zhang ◽  
Binghan Zhang ◽  
Bo Fan ◽  
Zhenhua Gao ◽  
Junyou Shi

Purpose This paper aims to focus on the liquefaction of soybean protein to obtain a homogeneous protein solution with a high solid/protein content but low viscosity, which may improve the bond properties and technological applicability of soybean protein adhesive. Design/methodology/approach The liquefactions of soybean protein in the presence of various amounts of sodium sulphite, urea and sodium dodecyl sulphate (SDS) are investigated, and their effects on the main properties of liquefied soybean protein and soybean protein adhesives are characterized by Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), viscosity tracing and plywood evaluation. Meanwhile, the applicability of soybean protein adhesive composed of liquefied protein for particleboard is also investigated. Findings Soybean protein can be effectively liquefied to form a homogeneous protein solution with a soybean protein content of 25 per cent and viscosity as low as 772 mPa.s; the addition of sodium sulphite, urea and SDS are beneficial for the liquefaction of soybean protein and have important effects on the technological applicability and water resistance of the obtained adhesive. The optimal liquefying technology of soybean protein is obtained in the presence of 1.5 Wt.% of sodium sulphite, 5 Wt.% of urea, 1.5 Wt.% of SDS and 3 Wt.% of sodium hydroxide. The optimal soybean protein adhesive has the desired water resistance in terms of the boiling-dry-boiling aged wet bond strength, which is up to 1.08 MPa higher than the required value (0.98 MPa) for structural use according to the commercial standard JIS K6806-2003. The optimal liquefied protein has the great potential to prepare particleboard. Research limitations/implications The protein content of liquefied soybean protein is expected to further increase from 25 to 40 Wt.% or even higher to further reduce the hot-pressing cycle or energy consumption of wood composites bonded by soybean protein adhesives. Practical implications The soybean protein adhesive composed of optimal liquefied protein has potential use in the manufacturing of structural-use plywood and has comparable applicability as a commercial urea-formaldehyde resin for the manufacturing of common particleboard. Social implications Soybean protein adhesive is an environmentally safe bio-adhesive that does not lead to the release of toxic formaldehyde, and the renewable and abundant soybean protein can be used with higher value added by the application as wood adhesive. Originality/value A novel liquefaction approach of soybean protein is proposed, and the soybean protein adhesive based on the liquefied protein is obtained with good technological applicability and desired bond properties that extend the applications of the soybean protein adhesive from interior plywood to particleboard and exterior or structural plywood.



2017 ◽  
Vol 41 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Mário Vanoli Scatolino ◽  
Andrey de Oliveira Costa ◽  
José Benedito Guimarães Júnior ◽  
Thiago de Paula Protásio ◽  
Rafael Farinassi Mendes ◽  
...  

ABSTRACT The wood panel industry is constantly growing, being necessary the innovation in technologies and raw materials to improve the quality of the final product. Considering the shortage and pressure to decrease the dependence of wood, there is an interest in other renewable materials such as agricultural wastes. Among these wastes, coffee parchment is one which deserves notoriety. An alternative use for coffee parchment could be for production of particleboard in association with wood particles. This study aimed to evaluate the feasibility of using coffee parchment for production of particleboard. The following percentages of wastes were used: 0, 10, 20, 30, 40 and 50% in association to eucalyptus wood. The panels were produced with 8% of urea formaldehyde (based on dry weight of particles). The pressing cycle consisted by: pre-pressing of 0.5 MPa for 10 minutes followed by pressing of 4.0 MPa, and temperature of 160° C for 15 minutes. The compaction ratio of particleboards produced using higher quantities of parchment improved the physical properties. The properties of Water Absorption (2 and 24 h) and Thickness Swelling (2 h) decreased with increasing percentage of coffee parchment. The Thickness Swelling (24 h) showed not significant effect with an increase of coffee waste. The Modulus of Elasticity for coffee parchment particleboards was in the range 646.49 ± 112.65 to 402.03 ± 66.24 MPa, while the Modulus of Rupture ranged from 8.18 ± 1.39 to 4.45 ± 0.75 MPa. The results showed that 10% of coffee parchment could be added for production of particleboards.



2015 ◽  
Vol 668 ◽  
pp. 145-149
Author(s):  
Bárbara Maria Ribeiro Guimarães ◽  
José Benedito Guimarães Jr. ◽  
Jefferson Barbosa Campomori ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes

The objective of this study was to investigate, by physical properties, the efficiency of MDP panels, compared to conventional particleboards, since MDP was considered as a raw material for the manufacture of these panels. MDP panels had the following composition: 20/60/20 face/core; a urea-formaldehyde adhesive was used, with a solids content of 55%; pH 8.42; viscosity of 420 Cp and gel time of 51 seconds. 12% of dry base resin were applied to the particles. The pressing cycle was 4 MPa, with a temperature of 160°C for a period of 8 minutes. The panels were produced with a density of 0.70g/cm3. We observed that with the exception of the physical properties of water absorption after 2 hours, the MDP showed lower physical properties (water absorption after 24 hours and thickness swelling after 2 hours and 24 hours of immersion in water) in relation to the panels conventional clusters. Thus demonstrating its superiority in relation to the physical properties of MDP compared to conventional agglomerated panels, emphasizing their use in this way.



2015 ◽  
Vol 668 ◽  
pp. 341-347
Author(s):  
Camila Láis Farrapo ◽  
Rafael Farinassi Mendes ◽  
Danillo Wisky Silva ◽  
Lourival Marin Mendes ◽  
José Roberto Soares Scolforo ◽  
...  

Particleboard industries, which are progressively increasing in number, consume a significant amount of wood from planted forests, mainly from the Pinus and Eucalyptus genera. However, these panels can be produced from any lignocellulosic material that provides high mechanical strength and good physical characteristics. Accordingly, the waste generated by the Brazilian agribusiness industry is an alternative resource for manufacturing particleboards. The study aimed to evaluate the effect of the combination of sugarcane bagasse and eucalyptus wood on the physical and mechanical properties of particleboards. The panels were produced with sugarcane bagasse in the proportion of 0, 25, 50, 75, and 100% supplemented with E. urophylla. The panels were produced with 9% urea-formaldehyde adhesive, nominal density of 0.70 g/cm3, and with the pressing cycle of 160°C temperature, specific pressure of 3.92 MPa, and operation time of 8 min. The significance of the proportion of sugarcane bagasse on all physical and mechanical properties was evaluated. The panels with the combination of wood with sugarcane bagasse showed the lowest values ​​in the physical properties and the highest values ​​in the mechanical properties. Only panels prepared with 25% and 50% sugarcane bagasse met all the requirements of the marketing standards.



2015 ◽  
Vol 668 ◽  
pp. 48-53
Author(s):  
Bárbara Maria Ribeiro Guimarães ◽  
José Benedito Guimarães Jr. ◽  
Ellison Rosario de Oliveira ◽  
Jefferson Barbosa Campomori ◽  
Lourival Marin Mendes

The objective of the present study was to verify the technical feasibility of using banana pseudostem fibers in the manufacture of MDP in intermediate panel layers, in different associations with wood from eucalyptus and banana pseudostem. The physical properties of water absorption and thickness swelling for immersion in water for both 2 and 24 hours were evaluated. Three panels were produced according to American Standard ASTM D 1037. 12% urea-formaldehyde adhesive were used for the production of panels. The pressing cycle was 4 MPa, with a temperature of 160°C for a period of 8 minutes. The panels were produced with a density of 0.70g/cm3 and had the following composition: 20/60/20 face/core, in which the face consisted of eucalyptus and varying proportions of pseudostem in the core (10%, 20% and 30%) and in eucalyptus. It is observed that the panels with 20% particles in the core showed the best results, compared to other panels evaluated.



Sign in / Sign up

Export Citation Format

Share Document