Coordinate Signal Control in Urban Traffic of Two-Direction Green Wave Based on Genetic BP Neural Network

2013 ◽  
Vol 823 ◽  
pp. 665-668 ◽  
Author(s):  
Shao Jiao Lv ◽  
Chun Gui Li ◽  
Zhe Ming Li ◽  
Qing Kai Zang

To maximize the bandwidth of green wave of trunk road is a main issue in the research of signal control in urban traffic. However, the traditional analytical algorithmcan not be applied in actual traffic widely. A novel dynamic two-direction green wave coordinate control strategy was proposed to overcome the problem. By combining the genetic BP neural network with the traditional analytical algorithm, the urban traffic of two-direction was controlled coordinately online. Finally, an actual example was presented. It shows that not only the green wave bandwidth, the phase difference of each intersection and the critical cycle of trunk road were optimized according to real-time traffic flow, but also our algorithm can be used in different traffic condition by adjusting the parameters of the model.

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3146
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Dongyang Shang ◽  
Xingchao Qu

With the development of robot technology, integrated joints with small volume and convenient installation have been widely used. Based on the double inertia system, an integrated joint motor servo system model considering gear angle error and friction interference is established, and a joint control strategy based on BP neural network and pole assignment method is designed to suppress the vibration of the system. Firstly, the dynamic equation of a planetary gear system is derived based on the Lagrange method, and the gear vibration of angular displacement is calculated. Secondly, the vibration displacement of the sun gear is introduced into the motor servo system in the form of the gear angle error, and the double inertia system model including angle error and friction torque is established. Then, the PI controller parameters are determined by pole assignment method, and the PI parameters are adjusted in real time based on the BP neural network, which effectively suppresses the vibration of the system. Finally, the effects of friction torque, pole damping coefficient and control strategy on the system response and the effectiveness of vibration suppression are analyzed.


2013 ◽  
Vol 380-384 ◽  
pp. 237-240
Author(s):  
Xiao Wei Wei

With worsening traffic condition in large and medium-sized cities, it has become one of the most important steps for the urban traffic strategy to solve the traffic problems. Since the urban traffic is a complex system in various factors and huge scale, to establish related mathematical model through computer numerical simulation is a significant solution to the comprehensive problems of complex analysis, decision and planning. At present researches on the problems have been achieved in many foreign countries, but domestic research is not enough, especially in the practical application. The macroscopic traffic flow model and microscopic traffic flow model are described and cellular automaton model, dual channel decision model and car-following model are analyzed in this paper, prediction of the ideal traffic flow and trip distribution is consequently concluded, which deepen the understanding to the traffic flow of various phenomenon intrinsic mechanism and predict most closely to the actual situation of traffic flow, which can make fundamental work for traffic flow simulation and for real-time traffic control[1-3].


2020 ◽  
Vol 306 ◽  
pp. 03002
Author(s):  
Yong Zhou ◽  
Yubo Zhang ◽  
Tianhao Yang

In the research of load simulator control method, PID control is the most widely used control strategy, but PID controller’s three parameters is difficult to set. This paper proposes a BP neural network feedforward PID controller system which uses BP neural network for setting these parameters, and in order to make the network learning speed up the convergence speed and not fall into local minimum, the adaptive vector method is adopted to improve the algorithm. The simulation and experimental results show that this method is good at avoiding the primeval shock and the sine tracking performance of the system has also been improved.


2014 ◽  
Vol 945-949 ◽  
pp. 1573-1578
Author(s):  
Xiao Feng ◽  
Hao Hu ◽  
Fan Rang Kong ◽  
Shi Qiu ◽  
Ye Sun

Targeting at the nonlinear, time-varying characteristics of terrain detector-milling cutting depth electro-hydraulic servo system in soil milling collection machines, this paper proposed the PID control menthod in BP neural network of terrain detector - milling cutting depth system and designed PID controller in BP neural network and conducted simulation analysis by programming with Matlab. The results show that, when compared with conventional PID control, BP neural network compounded with PID control would enable the system better dynamic performance and follow-up characteristics, therefore, it is an effective control strategy.


Sign in / Sign up

Export Citation Format

Share Document