Comparative Analysis of Steel Slag Characteristics and Treatment Process

2013 ◽  
Vol 834-836 ◽  
pp. 378-384 ◽  
Author(s):  
Jie Long Liao ◽  
Zhao Hui Zhang ◽  
Jian Tao Ju ◽  
Fu Cai Zhao

Steel slag is hydraulic cementing material, which is mainly applicable approach to the production of cement, admixture of high performance concrete, road engineering. But as a result of hydration expansion of the free calcium oxide and free magnesium oxide and dicalcium silicate morphological changes which is contained in slag cause poor stability of steel slag used in engineering, the steel slag utilization is very low. Therefore, the key technology of steel slag treatment process is to improve the stability of steel slag. Steel slag is alkaline slag, with lower temperature, the viscosity increases sharply, the liquidity variation, it is one of the important factors affect the steel slag processing, According to the need for different liquidity of steel slag to choose the corresponding steel slag treatment technology. Tank-type hot disintegrating, Rotary cylinder technology processing available to small particle size, good steel slag separation, active promotion of slags, conducive to the comprehensive utilization of steel slag.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1281
Author(s):  
Min Kyoung Kim ◽  
Huy Viet Le ◽  
Dong Joo Kim

This study investigated the electromechanical response of smart ultra-high-performance concretes (smart UHPCs), containing fine steel slag aggregates (FSSAs) and steel fibers as functional fillers, under external loads corresponding to different measurement methods. Regardless of different measurement methods of electrical resistance, the smart UHPCs under compression showed a clear reduction in their electrical resistivity. However, under tension, their electrical resistivity measured from direct current (DC) measurement decreased, whereas that from alternating current (AC) measurement increased. This was because the electrical resistivity, from DC measurement, of smart UHPCs was primarily dependent on fiber crack bridging, whereas that from AC measurement was dependent on tunneling effects.


2011 ◽  
Vol 194-196 ◽  
pp. 956-960 ◽  
Author(s):  
Yan Zhou Peng ◽  
Kai Chen ◽  
Shu Guang Hu

The interfacial properties of reactive powder concretes (RPCs), other known as ultra-high performance concrete (UHPC), containing steel slag powder and ultra fine fly ash are studied in this paper. The microstrctural characterization of interfacial transition zones (ITZs), including the aggregate-cement paste interfacial zone and the steel fiber-paste interfacial zone, is investigated by SEM. The microhardness of the aggregate-paste ITZ and the steel slag-paste ITZ is studied and the bond strength of steel fiber in matrix is tested through fiber pullout tests. The results indicate that the microhardness of the steel slag-paste ITZ is slightly higher than that of the aggregate-paste ITZ, which implies the advantage of the substitution of quartz powder with steel slag powder in preparation of RPCs to some degrees. Moreover, the hardness of these two ITZs is higher than that of the hardened paste. A certain amount of hydration products has been observed exsiting on the surface of steel fiber by SEM and the bond strength of steel fiber-martix is up to 9.3MPa. These interfical properties are definitely critical to obtain high performance of UHPCs containing steel slag powder and fly ash.


2013 ◽  
Vol 325-326 ◽  
pp. 71-74
Author(s):  
Yun Feng Li ◽  
Dong Sheng Zhang ◽  
Li Xu

The shrinkage cracking of concrete plays an important role to the accelerated deterioration and shortening the service life of concrete structures. The mineral admixture will be a perfect component of high performance concrete and its utilization will be a valuable resource for recycling. Early age cracking characteristics of concrete with compound admixtures, such as steel slag, blast furnace slag, fly ash, are studied in this paper using plate test method. The better anti-cracking performance of concrete will be realized when blast furnace slag replacing cement at 30%, steel slag and fly ash as the equal mixture components replacing cement at 30%, three kinds of admixtures replacing cement at 30% under the proper proportion.


2013 ◽  
Vol 671-674 ◽  
pp. 1839-1843
Author(s):  
Yuan Gang Wang ◽  
Chao Wan ◽  
Kai Jian Huang ◽  
Gao Qin Zhang ◽  
Ya Feng Hu

Several compound mineral admixtures, such as steel slag powder, granulated blast furnace slag powder and silica fume, are mixed with proper proportion to improve the workability of High Performance Concrete(HPC). Through the orthogonal experiment, workability of HPC is analyzed on water-binder ratio, sand ratio, the amount of superplasticizer and the amount of compound mineral admixtures. Results show that: workability of HPC was significantly effected by the amount of naphthalene sulphonate water-reducing admixture and water-binder ratio, the amount of compound mineral admixtures and sand ratio are impact factors on the workability in a certain extent.


10.29007/jxp9 ◽  
2018 ◽  
Author(s):  
Shashi Kant Sharma ◽  
Aniruddha Chopadekar ◽  
Samarth Bhatia

Slurry infiltrated fibrous concrete (SIFCON) is a new and unique type of high performance concrete invented by Lankard in 1979, containing high percentage of fiber about 6% to 20% by volume. SIFCON possesses high strength as well as large ductility and has excellent potential for structural application. The matrix in SIFCON has no coarse aggregate but high cementitious content. The aim of study is to evaluate the performance of SIFCON mortar with lower fiber percentage and to minimize the fine aggregate usage by replacing it with industrial waste i.e. steel slag. Thereby, it also helps in effective disposal of industrial waste and helps in mitigating environmental pollution. The main objective of this study is to determine the effect of partial replacement of sand with steel slag on the mechanical properties of SIFCON mortar. The experimental program was carried out with 2%, 3% and 4% of fiber content by volume combined with replacement of sand by steel slag in proportion of 10% and 20% by weight. For this purpose, compressive strength, flexural strength, split tension and impact strength of SIFCON specimens were tested after 7 and 28 days of curing, yielding positive results.


2012 ◽  
Vol 450-451 ◽  
pp. 800-804
Author(s):  
Hui Niu

This manuscript makes experiments on the relation between each index and fly-ash concrete strength, such as W/B, Sa, S/A and so on. At the same time we applicate artificial neural networks into HPFC The main research is on the relationship between component material and performance of the high-performance fly ash concrete, and also on the fly ash high-performance concrete quality control system and method, which promotes fly ash in foundation and basement construction engineering application. This text introduces the treatment technology of the non-linear artificial neural network, utilizing mixing ratio of existing concrete (import) and data as the performance index (output) to train the network, setting up concrete to non-linear import--Output mode relation, constructing concrete performance model, promoting prediction precision of concrete performance further.


Sign in / Sign up

Export Citation Format

Share Document