Experimental Research on Basalt Fiber Reinforced High-Strength Concrete Filled Steel Tubular Short Columns Subjected to Axial Compression Load

2013 ◽  
Vol 834-836 ◽  
pp. 768-771 ◽  
Author(s):  
Hai Liang Wang ◽  
Hao Li

The tests of 5 basalt fiber reinforced high-strength concrete filled steel tubular short columns and 1 high-strength concrete filled steel tubular short column were carried out under axial compression load, and the influence of different dosages and length-diameter ratio of basalt fiber on the mechanical behavior of the basalt fiber reinforced high-strength concrete filled steel tubular short columns were discussed. The results indicated that the ultimate load-bearing capacity and the ductility of short columns were improved by adding basalt fiber in concrete, and the failure mode of short columns was not affected by adding BF in concrete.

2020 ◽  
Vol 982 ◽  
pp. 175-180
Author(s):  
Yi Liu ◽  
Yue Ting Yang ◽  
Jing Zeng ◽  
Ling Chen

An experimental investigation on square and circular high-strength concrete short columns confined with aramid fiber-reinforced polymer (AFRP) sheets was conducted in this study. Fiber Bragg grating sensors have been applied successfully in monitoring of the strains of the AFRP-confined square and circular concrete columns. The experimental results demonstrate that two types of axial force-strain curves were observed depending on the form of the column. Results show fiber Bragg grating sensors have good repeatability and the ultimate load of the circular concrete column is larger than that of the square concrete column. The interlaminar strains of AFRP and high-strength concrete have also been attained. It helps to analyze the constraint effect of the concrete column and compute the ultimate load of the square and circular concrete column.


2020 ◽  
Vol 240 ◽  
pp. 117681
Author(s):  
Mehran Aziminezhad ◽  
Sahand Mardi ◽  
Pouria Hajikarimi ◽  
Fereidoon Moghadas Nejad ◽  
Amir H. Gandomi

2018 ◽  
Vol 161 ◽  
pp. 587-597 ◽  
Author(s):  
Haitang Zhu ◽  
Shengzhao Cheng ◽  
Danying Gao ◽  
Sheikh M. Neaz ◽  
Chuanchuan Li

2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Sign in / Sign up

Export Citation Format

Share Document