Stability Analysis for Coupling Hydraulic-Mechanical Unsaturated Deposit Body under Rainfall Infiltration

2013 ◽  
Vol 838-841 ◽  
pp. 768-772
Author(s):  
Qiang Ren

In view of the deficiency of traditional saturated soil theory analyzing seepage and stability of slope under rainfall infiltration, based on the saturated-unsaturated flow theory, considering the mechanical behavior of slope which strongly coupled with flow behavior, the hydraulic-mechanical coupled finite element method on the case of rainfall induced instability in deposit body in Front of gushui Dam are used. The safety factor is calculated based on stress field obtained from the finite element method, with modified unsaturated Mohr-Coulomb failure criterion. The influences of rainfall duration and rainfall intensity to stability of deposit body are analyzed; the difference between calculated safety factor based on unsaturated flow theory and saturated flow theory is discussed.

2015 ◽  
Vol 9 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Dmytro Fedorynenko ◽  
Sergiy Boyko ◽  
Serhii Sapon

Abstract The analysis of spatial functions of pressure considering the geometrical deviations and the elastic deformation of conjugate surace have been considered. The analysis of spatial functions of pressure is performed by the finite element method. The difference of the size of pressure in a tangential direction of a pocket of a support under various service conditions has been investigated. A recommendation for improving of operational characteristics in regulated hydrostatic radial bearing has been developed.


Author(s):  
M. A. Kabir ◽  
C. F. Higgs ◽  
M. R. Lovell ◽  
V. Jasti ◽  
M. C. Marinack

Explicit finite element method modeling of granular flow behavior in an annular shear cell has been studied and presented in this paper. The explicit finite element method (FEM) simulations of granular flow in an annular shear cell with around 1633 particles were performed, where the inner wheel rotated at a very high speed and the outer disk remained stationary. The material properties of the particles and the outer wheel were defined as elastic steel whereas the inner wheel was elastic aluminum. In this investigation, the explicit FEM model mimicked granular flow in an experimental set up where the inner wheel was rotated at a speed of 240 rpm. The FEM results for shearing motion and solid fraction were compared with experimental results from a granular shear cell.


2011 ◽  
Vol 189-193 ◽  
pp. 1941-1945
Author(s):  
Yong Li ◽  
Jian Rong Zheng

An understanding of flow behavior of polymer melts through a slit die is extremely important for optimizing die design. In this paper numerical simulations have been undertaken for the flow of linear low-density polyethylene through Coat-hanger sheet dies. A new finite element method is proposed to simulate the flow in slit channel using Wagner constitutive model. This is one kind of finite element semi-analytical method by which the velocity distributions in thickness direction is approach by Fourier series. Numerical results of volumetric flow and pressure in coat-hanger dies are given to compare to the three-dimensional simulation using the finite element method. It appears that numerical solutions are as accurate as the complete 3D calculations and the computing time can be saved.


2014 ◽  
Vol 601 ◽  
pp. 159-162
Author(s):  
Mircea Krepelka ◽  
Mirela Toth-Taşcău

In this study, periacetabular pressures produced by different acetabular liner geometries were analyzed using Finite Element Method. The cup models consist of hemispherical metal shells fitted with normal and different chamfered polyethylene liner geometries, with the same degree of femoral head coverage. The aim of this study was to understand the influence of the design parameters of the chamfered liners, which are primarily designed to increase the range of motion (ROM) of the hip joint and reduce the risk of impingement, on the acetabular contact pressures. The cup models were loaded to simulate periacetabular pressures during routine activities. The proposed models have been analyzed considering a cup position of 40olateral abduction and 15oanteversion. The results show that the difference in contact pressure between the normal and chamfer models was not substantial in the given orientation of the cup. Also, the increase of the chamfer angle has a small influence on the maximum contact pressures, although that could be also dependent on the reduction of the polyethylene thickness. Pre-clinical testing of total hip prostheses using Finite Element Method enables the evaluation of contact pressures and stress distribution, and proves to be a valuable tool to analyze the parameters reducing the contact pressure.


2012 ◽  
Vol 626 ◽  
pp. 662-666
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

In this project, a rigid plastic Finite Element Method (FEM) simulator was developed for simulating the plastic flow material in rotary forming. The simulation result was able to predict the cup height of the final product up to an accuracy of 80% and the localized deformation which leads to failure in the deformation process. The workability of the aluminum disc was also studied to understand the material flow behavior under incremental bending and flow forming by utilizing a lathe machine.


Sign in / Sign up

Export Citation Format

Share Document