Approximate Finite-Time Stable Control for Simple Interconnected Power Systems

2013 ◽  
Vol 846-847 ◽  
pp. 305-308
Author(s):  
Jian Li Zhao ◽  
Bao Feng Yan ◽  
Bo Chen

Considering the simple interconnected power systems, the finite-time stable control problem is studied. A nonlinear feedback control method with dynamic active compensation is proposed, which makes the systems achieves approximately the finite-time stable control. Meantime, in order to solve the problem of system uncertainty and unmeasurable states, an extended state observer is designed. Simulation results show the effectiveness of the control method.

2004 ◽  
Vol 14 (05) ◽  
pp. 1671-1681 ◽  
Author(s):  
MAO-YIN CHEN ◽  
ZHENG-ZHI HAN ◽  
YUN SHANG ◽  
GUANG-DENG ZONG

Combining the backstepping design and the variable structure control, we propose a robust nonlinear feedback control method to control an uncertain van der Pol oscillator even if there exist system uncertainties and external disturbances in this oscillator. If system uncertainties are estimated and some parameters are chosen suitably, the output of van der Pol osicllator can track arbitrary smooth reference signal. Theoretical analysis and numerical simulations verify the effectiveness of this method.


2005 ◽  
Vol 14 (04) ◽  
pp. 757-770 ◽  
Author(s):  
CRISTINA MOREL ◽  
MARC BOURCERIE ◽  
FRANÇOIS CHAPEAU-BLONDEAU

Switch-mode power supplies usually emit electromagnetic interferences at the switching frequency and its harmonics. Inducing chaos in these systems has recently been suggested as a means of reducing these spectral emissions, yet at the expense of aggravating the overall magnitude of the ripple in the output voltage. We propose here a new nonlinear feedback control method, which induces chaos, and which is able at the same time to achieve low spectral emission and to maintain a small ripple in the output. The feasibility and usefulness of this new and simple method is shown here with a numerical example, which includes a comparison with the previous control method.


2021 ◽  
Vol 1 (2) ◽  
pp. 198-208
Author(s):  
Rolande Tsapla Fotsa ◽  
André Rodrigue Tchamda ◽  
Alex Stephane Kemnang Tsafack ◽  
Sifeu Takougang Kingni

The microcontroller implementation, chaos control, synchronization, and antisynchronization of the nonlinear resistive-capacitive-inductive shunted Josephson junction (NRCISJJ) model are reported in this paper. The dynamical behavior of the NRCISJJ model is performed using phase portraits, and time series. The numerical simulation results reveal that the NRCISJJ model exhibits different shapes of hidden chaotic attractors by varying the parameters. The existence of different shapes of hidden chaotic attractors is confirmed by microcontroller results obtained from the microcontroller implementation of the NRCISJJ model. It is theoretically demonstrated that the two designed single controllers can suppress the hidden chaotic attractors found in the NRCISJJ model. Finally, the synchronization and antisynchronization of unidirectional coupled NRCISJJ models are studied by using the feedback control method.  Thanks to the Routh Hurwitz stability criterion, the controllers are designed in order to control chaos in JJ models and achieved synchronization and antisynchronization between coupled NRCISJJ models. Numerical simulations are shown to clarify and confirm the control, synchronization, and antisynchronization.


2019 ◽  
Vol 30 (07) ◽  
pp. 1940013
Author(s):  
Darui Zhu ◽  
Rui Wang ◽  
Chongxin Liu ◽  
Jiandong Duan

This paper presents an adaptive projective pinning control method for fractional-order complex network. First, based on theories of complex network and fractional calculus, some preliminaries of mathematics are given. Then, an analysis is conducted on the adaptive projective pinning control theory for fractional-order complex network. Based on the projective synchronization control method and the combined adaptive pinning feedback control method, suitable projection synchronization scale factor, adaptive feedback controller and the node selection algorithm are designed to illustrate the synchronization for fractional-order hyperchaotic complex network. Simulation results show that all nodes are stabilized to equilibrium point. Theoretical analysis and simulation results demonstrate that the designed adaptive projective pinning controllers are efficient.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Manying Bai ◽  
Yazhou Gao

We study the dynamics of a nonlinear discrete-time duopoly game, where the players have homogenous knowledge on the market demand and decide their outputs based on adaptive expectation. The Nash equilibrium and its local stability are investigated. The numerical simulation results show that the model may exhibit chaotic phenomena. Quasiperiodicity is also found by setting the parameters at specific values. The system can be stabilized to a stable state by using delayed feedback control method. The discussion of control strategy shows that the effect of both firms taking control method is better than that of single firm taking control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chao Ma ◽  
Yujuan Tian ◽  
Zhongfeng Qu

In this paper, we make an exploration of a technique to control a class of finance chaotic systems. This technique allows one to achieve the finite time stability of the finance system more effectively with less control input energy. First, the finite time stability of three dimension finance system without market confidence is analyzed by using a single controller. Then, two controllers are designed to stabilize the four-dimension finance system with market confidence. Moreover, the finite time stability of the three-dimension and four-dimension finance system with unknown parameter is also studied. Finally, simulation results are presented to show the chaotic behaviour of the finance systems, verify the effectiveness of the proposed control method, and illustrate its advantages compared with other methods.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yuhua Xu ◽  
Jinmeng Wang ◽  
Wuneng Zhou ◽  
Xin Wang

Finite-time synchronization in pth moment is considered for time varying stochastic chaotic neural networks. Compared with some existing results about finite-time mean square stability of stochastic neural network, we obtain some useful criteria of finite-time synchronization in pth moment for chaotic neural networks based on finite-time nonlinear feedback control and finite-time adaptive feedback control, which are efficient and easy to implement in practical applications. Finally, a numerical example is given to illustrate the validity of the derived synchronization conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ze Zhang ◽  
Hamid Reza Karimi ◽  
Hai Huang ◽  
Kjell G. Robbersmyr

A feedback control method based on an extended state observer (ESO) method is implemented to vibration reduction in a typical semiactive suspension (SAS) system using a magnetorheological (MR) damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC) is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.


Sign in / Sign up

Export Citation Format

Share Document