Research on Surrounding Rock Control Technology in Two Hard Fully Mechanized Coal Mining

2013 ◽  
Vol 868 ◽  
pp. 343-346
Author(s):  
Hong Chun Xia ◽  
Ru Nan Zhang ◽  
Wei Li

The coal 8210 big mining height of the Datong mine Jin hua gong face in the process of mining airport coal pillar fried state a, floor deformation intense, serious kick drum, eventually leading to rock failure .In the severe cases, easily induced by shock pressure and other disasters ,these have serious impact on the efficient production of face security in the large mining height. by the airport side of roadway roof pressure relief, combined with roadway bolting reinforcement technology effectively control the deformation of surrounding rock of roadway, Test results show that the security measures taken can meet the well production safety requirements.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
En Wang ◽  
Shengrong Xie ◽  
Fulian He ◽  
Long Wang ◽  
...  

Multi-coal-seam mining creates surrounding rock control difficulties, because the mining of a coal face in one seam can affect coal faces in another. We examine the effects of multi-coal-seam mining on the evolution of the deviatoric stress distribution and plastic zone in the roadway surrounding rock. In particular, we use numerical simulation, theoretical calculation, drilling detection, and mine pressure observation to study the distribution and evolution characteristics of deviatoric stress on Tailgate 8709 in No. 11 coal seam in Jinhuagong mine when the N8707 and N8709 coal faces in No. 7-4 coal seam and the N8707 and N8709 coal faces in No. 11 coal seam are mined. The evolution laws of deviatoric stress and the plastic zone of roadway surrounding rock in the advance and behind sections of the coal face are studied, and a corresponding control technology is proposed. The results show that the peak value of deviatoric stress increases with the advance of the coal face, and the positions of the peak value of deviatoric stress and the plastic zone become deeper. The deflection angle of the peak stress after mining at each coal face and the characteristics of the peak zone of deviatoric stress and the plastic zone of the roadway surrounding rock under the disturbance of multi-coal-seam mining are determined. In conclusion, the damage range in the roadway roof in the solid-coal side and coal pillar is large and must be controlled. A combined support technology based on high-strength and high pretension anchor cables and truss anchor cables is proposed; long anchor cables are used to strengthen the support of the roadway roof in the solid-coal side and coal pillar. The accuracy of the calculated plastic zone range and the reliability of the combined support technology are verified through drilling detection and mine pressure observation on site. This research can provide a point of reference for roadway surrounding rock control under similar conditions.


2011 ◽  
Vol 328-330 ◽  
pp. 1671-1674
Author(s):  
Ying Ma ◽  
Sheng Zhong

Using unified model and theory of rock pressure, the problems, such as caving of stope roof with large mining height and destruction of support, strata movement and surface subsidence, are unified analyzed and researched. The results show that: pressure shell is dynamic shell, which moves forward with the propulsion of working face; with the increase of mining height on the face, the height of fracture zone in coal seam increases, not continuously, but jumpily; with the increase of mining height, support load rises, but the degree of this rise decreases gradually, increased degree of immediate roof weight should be greater than that of given deformation pressure. The results provide necessary basis for reliability of hydraulic support on the working face with large mining height and safety work in the underground.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Li-li Jiang ◽  
Zeng-qiang Yang ◽  
Gang-wei Li

In order to study the optimal coal pillar width and surrounding rock control mechanism of gob-side entry under inclined seam condition, the 130205 return air entry adjacent to 130203 gob in Yangchangwan No. 1 well is taken as a typical engineering background. By means of engineering background analysis, theoretical analysis based on inside and outside stress field, numerical simulation by FLAC3D software, and in situ industrial test and relevant monitoring methods, the optimal coal pillar width and surrounding rock control technology are obtained. The results show that the influence range of inside stress field is about 12.2∼12.8 m based on theoretical calculation result; under the influence of 10 m coal column, the overall deformation of the roadway is relatively small and within the reasonable range of engineering construction, so the width of the coal pillar along the return air roadway is set to 10 m which is more reasonable; the cross-section characteristics of special-shaped roadway lead to asymmetric stress distribution and fragmentation of surrounding rock, and then the asymmetric surrounding rock control technology under the coupling effect of roof prestressed anchor + high-strength single anchor cable + truss anchor cable support is proposed. The monitoring results of this support method are effective for the maintenance of gob-side entry, and the study conclusions provide new guidance for the surrounding rock control mechanism of gob-side entry under inclined seam conditions.


2021 ◽  
Author(s):  
Lei Zhaoyuan ◽  
Cui Feng ◽  
Liu Jianwei ◽  
Lai Xingping ◽  
Yi Ruiqiang

Abstract The coal column undergoes three types of force evolution from the formation to the end of mining. This paper takes large mining height working face at No.2 Coal Mine as example to study the ways to avoid dynamic instability of the coal column triggered by the deep mining. By means of geological survey, theoretical analysis, numerical calculation and field verification, the load processes under the three stress stage are proposed, and the evolution law of the coal column is analyzed. The study shows that the depth, large mining height working face, coal pillar force and size altogether determine the damage characteristics of the coal pillar. With the combination of Flac3D and 3DEC, it can be analyzed that the plastic failure and displacement characteristics of the 35m coal column under the action of secondary dynamic load coincide. The perturbation stress distribution is stable, which finally determines the reasonable width of the 35m coal column. Field measurements show that the top and gang of the 35m coal column undergo three kinds of displacement characteristics. The lower part is more stable. The top plate of the upper and lower corner completely collapsed in the emptying area, which can play a good supporting role.


Sign in / Sign up

Export Citation Format

Share Document