Safety Assessment of Railway Dangerous Goods Transportation Based on Set Pair Analysis

2013 ◽  
Vol 869-870 ◽  
pp. 288-292
Author(s):  
Dong Jie Liu ◽  
Zhen Lin Wei

In order to overcome the drawbacks that occur when traditional safety assessment methods do not consider the certain and uncertain characteristics of information and in order to enhance the calculation efficiency, a new Identical Discrepancy Contrary (IDC) system is safety comprehensive assessment model based on Set Pair Analysis is established. Incorporating the Analytic Hierarchy Process (AHP) to obtain the index weight, this model analyses the uncertainties in the degree of connection acquired by assessment, and then makes the identical discrepancy contrary system research on the certainty and uncertainty of information in the engineering system.

2014 ◽  
Vol 1065-1069 ◽  
pp. 3372-3376
Author(s):  
E Lu ◽  
Jing Liang Xu

At home and abroad research, accident rate prediction model for highway safety assessment contains various influence factors, so it is difficult to find a comprehensive accident prediction model considering so much of them. In this article, we select appropriate accident prediction models through comprehensive literature research respectively about the highway alignment conditions, traffic conditions, interchange spacing conditions, then determine the weights of three accident prediction models using the analytic hierarchy process (AHP), finally obtain the comprehensive safety assessment model after the consistency check. Its’ feasibility is proved by a practical example.


2010 ◽  
Vol 20-23 ◽  
pp. 196-201
Author(s):  
Ge Ning Xu ◽  
Fan Jiang

By combined fuzzy comprehensive evaluation with AHP (Analytic Hierarchy Process) together, a safety assessment model for overhead traveling crane is set up in regard to deficiency of safety assessment method for crane at present, which can evaluate safety of overhead traveling crane in-service qualitatively and quantitatively. Through a safety analysis and assessment on general overhead traveling crane, the result of assessment is in accord with the practical situation of overhead traveling crane. It can reflect more fully the safety of the whole crane system and the influence and level of each factor to whole crane system safety, witch an effective synthetic evaluation method is put forward for the safety evaluation of crane.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Junwu Wang ◽  
Sen Liu ◽  
Yinghui Song ◽  
Jing Wang ◽  
Han Wu

Environmental risks have a significant impact on the sustainability of subway station construction projects. This paper proposes an environmental risk assessment model based on the intuitionistic fuzzy analytic hierarchy process (IFAHP) and set pair analysis (SPA) to deal with the ambiguity and uncertainty in the assessment. An index system for environmental risk assessment is established based on a literature review and the rough set method. Subsequently, the IFAHP is used to calculate the indicator weights to describe the certainty, uncertainty, and hesitation degree of expert decisions in the weighting calculation by means of affiliation, nonaffiliation, and hesitation. Finally, SPA, which can deal with the randomness, uncertainty, and ambiguity of the indicators, is used to assess environmental risk. A case study of two typical stations (Lushan Avenue Station and Huilong Road West Station) of Metro Line 11 in Chengdu, China, is conducted. The case study results are consistent with field surveys. The evaluation results of the proposed model are more objective and reasonable than those of the traditional analytic hierarchy process, the entropy weight method, fuzzy comprehensive evaluation, grey correlation analysis, and technique for order of preference by similarity to an ideal solution (TOPSIS). The research results prove the scientific validity and superiority of the proposed model.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Zong-Xiao Yang ◽  
Lei Song ◽  
Chun-Yang Zhang ◽  
Chong Li ◽  
Xiao-Bo Yuan

How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.


Author(s):  
Yonghong Yang ◽  
Yu Chen ◽  
Zude Tang

Increasing traffic volume and insufficient road lanes often require municipal roads to be reconstructed and expanded. Where a road passes under a bridge, the reconstruction and expansion project will inevitably have an impact on the bridge. To evaluate the safety impact of road engineering projects on bridges, this paper evaluates the safety of the roads and ancillary facilities of highway bridges involved in municipal road engineering projects. Based on a comprehensive analysis of the safety factors of municipal roads undercrossing existing bridges, a fuzzy comprehensive analytic hierarchy process (AHP) evaluation method for the influence of road construction on the safety of existing bridges is proposed. First, AHP is used to select 11 evaluation factors. Second, the target layer, criterion layer, and index layer of evaluation factors are established, then a safety evaluation factor system is formed. The three-scale AHP model is used to determine the weight of assessment indexes. Third, through the fuzzy comprehensive AHP evaluation model, the fuzzy hierarchical comprehensive evaluation is carried out for the safety assessment index system. Finally, the fuzzy comprehensive evaluation method is applied to the engineering example of a municipal road undercrossing an existing expressway bridge. The comprehensive safety evaluation of the existing bridge reflects the practicability and feasibility of the method. It is expected that, with further development, the method will improve the decision-making process in bridge safety assessment systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Chengwei Ni ◽  
Liye Zhang ◽  
Ke Sheng ◽  
Baoning Hong

The durability of lightweight cellular concrete (LCC) and the corresponding assessment method are studied in this paper to improve the utilization of LCC in subgrade construction engineering. The durability assessment method is established by combining the analytic hierarchy process (AHP) with fuzzy comprehensive evaluation (FCE). The main assessment processes are as follows. Firstly, based on the physical and mechanical properties of LCC, the influencing factors are selected in terms of preliminary design, construction technology, and operation and management after completion of construction. The grading standard of influencing factors is established as well. Secondly, a multilevel assessment model with targets level, criteria level, and indexes level is established. AHP determines the effective weight of the lower level relative to the upper level. The consistency check of the judgment matrix is conducted to prove the rationality of the distribution of influencing factors’ effect weight. Thirdly, the membership function which is suitable for each influencing factor is built to calculate the membership degree. Besides, the practicality and reliability of AHP combined with FCE are demonstrated through a practical engineering case, which is the third section of a highway in Guangdong Province, China.


Sign in / Sign up

Export Citation Format

Share Document