Determination of Band Gap Energy of Semiconductor in Homojunction Structure Devices by Using Customized Microcontroller Based Apparatus

2014 ◽  
Vol 896 ◽  
pp. 633-637 ◽  
Author(s):  
Kuwat Triyana ◽  
Surya Ramadhan ◽  
Aji Muhammad Iqbal Barata ◽  
Chotimah ◽  
Sabarman Harsojo

We have successfully developed a customized apparatus based on microcontroller for simple band gap energy (Eg) measurement of semiconductors in homojunction structure devices. The apparatus consisted of a data acquisition system based on microcontroller AVR ATMega 128 and a thermos flask equipped with temperature controller. It permits recording of current-voltage (I-V) and temperature and subsequently sends data to a computer to enable the computer processing of such data. For samples under tested, we used two types of commercial diode, i.e. Silicon (1N4007) and Germanium (1N60). In this measurement, the voltage across the resistor was used to calculate the current while the voltage across the diode gave the forward bias voltage. The temperature of diode was varied from 5°C to 80°C. During each I-V measurement, the temperature of diode was maintained to be constant by employing a proportional-integral-derivative (PID) controller to the heater. Furthermore, by varying the temperature of diode, we could extract the saturation currents under reverse bias across the diode of each I-V measurement. For the two types of diode, it is found that the Eg of silicon is 1.13 ± 0.03 eV, while that of germanium is 0.71 ± 0.03 eV. This result is closed to the Eg value of each diode indicated in the respective datasheet. Therefore, it suggests for applying this apparatus for measuring Eg of semiconductor in most homojunction structure devices.

2013 ◽  
Vol 6 (7) ◽  
pp. 071201 ◽  
Author(s):  
Daniel A. Beaton ◽  
Kirstin Alberi ◽  
Brian Fluegel ◽  
Angelo Mascarenhas ◽  
John L. Reno

2018 ◽  
Vol 20 (41) ◽  
pp. 26405-26413 ◽  
Author(s):  
Woo Gyu Han ◽  
Woon Bae Park ◽  
Satendra Pal Singh ◽  
Myoungho Pyo ◽  
Kee-Sun Sohn

A plausible configuration for Li0.5CoO2 was pinpointed using NSGA-III-assisted DFT calculations involving redox potential, band gap energy and magnetic moment.


2015 ◽  
Vol 5 (2) ◽  
pp. 146-154 ◽  
Author(s):  
George Varughese ◽  
P. Jithin ◽  
K. Usha

1997 ◽  
Vol 81 (10) ◽  
pp. 6916-6920 ◽  
Author(s):  
P. Roura ◽  
M. López-de Miguel ◽  
A. Cornet ◽  
J. R. Morante

Heliyon ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. e01505 ◽  
Author(s):  
A. Escobedo-Morales ◽  
I.I. Ruiz-López ◽  
M.deL. Ruiz-Peralta ◽  
L. Tepech-Carrillo ◽  
M. Sánchez-Cantú ◽  
...  

2014 ◽  
Vol 34 (5) ◽  
pp. 471-475 ◽  
Author(s):  
Periyannan Jayamurugan ◽  
Veerappa Gounder Ponnuswamy ◽  
Ramasamy Mariappan ◽  
Thaiyan Mahalingam ◽  
Yammani Venkat Subba Rao

Abstract A water-dispersed dodecylbenzene sulfonic acid (DBSA)/poly (styrene sulfonic acid) (PSS)/polypyrrole (PPY) composite was prepared by an in situ chemical polymerization method. The prepared solution was spun on indium tin oxide (ITO) glass plates at different rates of 2000 and 3000 rpm. The optical band gap energy (Eg) was calculated by UV spectroscopy. The band gap of the composite thin films was found at 1.89 eV and 1.93 eV, respectively. A Fourier transform infrared (FTIR) spectrum confirms the presence of dopant and co-dopant in the structure. The diode parameters were calculated from current-voltage (I-V) characteristics and discussed. The I-V characteristics of the devices indicated behavior of a Schottky diode. The ideality factor, barrier height (ϕb) and saturation current were investigated. The ϕb was found to be 0.59 eV and 0.52 eV for 2000 rpm and 3000 rpm, respectively. The ideality factor was calculated from the slope of the linear region of the forward bias in the I-V curves and was found to be 6.4 and 13.5. The results of the present study reveal that the 2000 rpm coated ITO/DBSA/PSS/PPY/Al device showed better nonlinearity behavior than the 3000 rpm one.


2012 ◽  
Vol 41 (10) ◽  
pp. 2857-2866 ◽  
Author(s):  
Jean Wei ◽  
Joel M. Murray ◽  
Jacob Barnes ◽  
Leonel P. Gonzalez ◽  
Shekhar Guha

Sign in / Sign up

Export Citation Format

Share Document