Prediction of Tensile Properties of CNF/Epoxy Composites Using Artificial Neural Network

2014 ◽  
Vol 898 ◽  
pp. 111-114
Author(s):  
Xing Kai Chen

In present study, artificial neural network (ANN) was used to predict the tensile moduli of carbon nanofibers (CNF)/epoxy composites. The tensile properties of CNF/epoxy composites made by different dispersion technique were measured by tensile test. It was found that the tensile properties are seriously affected by the CNF fraction, ultrasonication time and mechanical stirring time. According to the test results, ANN was trained and used to predict the tensile moduli of CNF/epoxy composites. By compared the predicted values with the experimental data, it was demonstrated that the back propagation ANN model is a promising tool for prediction of properties of composites.

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Adel Ghith ◽  
Thouraya Hamdi ◽  
Faten Fayala

Abstract An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Sadighzadeh ◽  
A. Salehizadeh ◽  
M. Mohammadzadeh ◽  
F. Shama ◽  
S. Setayeshi ◽  
...  

Artificial neural network (ANN) is applied to predict the number of produced neutrons from IR-IECF device in wide discharge current and voltage ranges. Experimentally, discharge current from 20 to 100 mA had been tuned by deuterium gas pressure and cathode voltage had been changed from −20 to −82 kV (maximum voltage of the used supply). The maximum neutron production rate (NPR) of 1.46 × 107 n/s had occurred when the voltage was −82 kV and the discharge current was 48 mA. The back-propagation algorithm is used for training of the proposed multilayer perceptron (MLP) neural network structure. The obtained results show that the proposed ANN model has achieved good agreement with the experimental data. Results show that NPR of 1.855 × 108 n/s can be achieved in voltage and current of 125 kV and 45 mA, respectively. This prediction shows 52% increment in maximum voltage of power supply. Also, the optimum discharge current can increase 1270% NPR.


2009 ◽  
Vol 12 (4) ◽  
pp. 94-106 ◽  
Author(s):  
Duc Van Le

Artificial Neural Network (ANN) model along with Back Propagation Algorithm (BPA) has been applied in many fields, especially in hydrology and water resources management to simulate or forecast rainfall runoff process, discharge and water level - time series, and other hydrological variables. Several researches have recently been focusing to compare the applicability of ANN model with other theory-driven and data-driven approaches. The comparison of ANN with M5 model trees for rainfall-runoff forecasting, with ARMAX models for deriving flow series, with AR models and regression models for forecasting and estimating daily river flows have been carried out. The better results that were implemented by ANN model have been concluded. So, this research trend is continued for the comparison of ANN model with Tank, Harmonic, Thomas and Fiering models in simulation of the monthly runoffs at Dong Nai river basin, Viet Nam. The results proved ANN being the best choice among these models, if suitable and enough data sources were available.


10.17158/320 ◽  
2014 ◽  
Vol 18 (2) ◽  
Author(s):  
Eric John G. Emberda ◽  
Den Ryan L. Dumas ◽  
Timothy Pierce M. Rentillo

<p>This study compared the use of Linear Regression and Feed Forward Backpropagation Artificial Neural Network (ANN) in forecasting the coconut yield and copra yield of a selected area in Davao region. Raw data were gathered from the Philippine Coconut Authority, Davao Research Center. An ANN model was created and tested repeatedly to the best combination of nodes. Accuracy of the forecast between the two methods was compared by looking at the mean square error and the standard error for variable x and y. Results showed that the use of Feed Forward Back Propagation Artificial Neural Network gives better accuracy of the forecast data.</p>


2019 ◽  
Vol 07 (08) ◽  
pp. 87-97
Author(s):  
Guillermina Capiel ◽  
Arrosio Florencia ◽  
Vera A. Alvarez ◽  
Pablo E. Montemartini ◽  
Juan Morán

Sensor Review ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Rafiu King Raji ◽  
Michael Adjeisah ◽  
Xuhong Miao ◽  
Ailan Wan

Purpose The purpose of this paper is to introduce a novel respiration pattern-based biometric prediction system (BPS) by using artificial neural network (ANN). Design/methodology/approach Respiration patterns were obtained using a knitted piezoresistive smart chest band. The ANN model was implemented by using four hidden layers to help achieve the best complexity to produce an adequate fit for the data. Not only did this study give a detailed distribution of an ANN model construction including the scheme of parameters and network layers, ablation of the architecture and the derivation of back-propagation during the iterations but also engaged a step-based decay to systematically drop the learning rate after specific epochs during training to minimize the loss and increase the model’s accuracy as well as to limit the risk of overfitting. Findings Findings establish the feasibility of using respiratory patterns for biometric identification. Experimental results show that, with a learning rate drop factor = 0.5, the network is able to continue to learn past epoch 40 until stagnation occurs which yielded a classification accuracy of 98 per cent. Out of 51,338 test set, the model achieved 51,557 correctly classified instances and 169 misclassified instances. Practical implications The findings provide an impetus for possible studies into the application of chest breathing sensors for human machine interfaces in the area of entertainment. Originality/value This is the first time respiratory patterns have been applied in biometric prediction system design.


2019 ◽  
Vol 24 (No 1) ◽  
pp. 113-118

Unbalance is an important fault that can damage or shut down vital rotary systems such as the gas turbine, compressors, and others, so to avoid this trouble, the balancing process is very crucial, even though it is time-consuming and costly. Thus, having a technique which can predict the unbalance location and its parameters will be valuable and practical. The current study represents a model that can identify the unbalance’s mass, radius, and location of the eccentric mass based on the artificial neural network (ANN) model. The inputs of the proposed ANN, which is based on a feed forward with back propagation model, is the bearing acceleration signal in the frequency domain. It has 10 hidden layers with 10 neurons through each layer. The accuracy in prediction was acquired at 96%, 96%, and 94% for the disc number (plane), the eccentric radius, and eccentric mass values, respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document