Controller Design for See-Saw Systems

2014 ◽  
Vol 898 ◽  
pp. 680-683
Author(s):  
Hai Yan Wang

The control theory has widely application in many fields such as industrial and agricultural. A class of see-saw system model will be studied in this paper. Using the theory of pole assignment, we will design the state feedback controller, such that the closed-loop system is asymptotically stable. At the same time, using the tool of MATLAB, the model of closed see-saw system will be simulated and analyzed. It reveals the state regularity of see-saw system.

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Xiaoming Chen ◽  
Mou Chen ◽  
Jun Shen

The problem ofl1-induced state-feedback controller design is investigated for positive Takagi-Sugeno (T-S) fuzzy systems with the use of linear Lyapunov function. First, a novel performance characterization is established to guarantee the asymptotic stability of the closed-loop system withl1-induced performance. Then, the sufficient conditions are presented to design the required fuzzy controllers and iterative convex optimization approaches are developed to solve the conditions. Finally, one example is presented to show the effectiveness of the derived theoretical results.


2018 ◽  
Vol 41 (3) ◽  
pp. 615-620
Author(s):  
Tiancheng Wang ◽  
Shi Zheng ◽  
Wuquan Li

This paper aims to solve the state feedback stabilization problem for a class of high-order nonlinear systems with more general high-order terms. Based on the backstepping design method and Lyapunov stability theorem, a state feedback controller is constructed to ensure that the origin of the closed-loop system is globally asymptotically stable. The efficiency of the state feedback controller is demonstrated by a simulation example.


Sign in / Sign up

Export Citation Format

Share Document