Thermal Behaviour of Slurry Prepared from Clermont Bituminous Coal and Oil Palm Empty Fruit Bunch Bio-Oil

2014 ◽  
Vol 906 ◽  
pp. 153-158 ◽  
Author(s):  
Hazlin Hamdan ◽  
Munawar Zaman Shahruddin ◽  
Ahmad Rafizan Mohamad Daud ◽  
Syed Shatir A. Syed-Hassan

Investigation on the pyrolysis behaviour of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0; 70:30; 60:40;0: 100) were conducted using a Thermogravimetric Analyzer (TGA). The selected coal sample was Clermont bituminous coal (Australia), while Empty Fruit Bunch (EFB) was used as source of bio-oil that was thermally converted by means of pyrolysis. Thermal degradation of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The proportions of CBS fuel at 70:30 and 60:40 blends were observed to have influenced the fuel properties of the slurry. The addition of bio-oil will shift the temperature region towards early devolatilization. Meanwhile, the thermal profiles of the blends, showed potential trends that followed the characteristics of an ideal slurry fuel where highest degradation rate was found at the blend ratio of 60:40 biooil/coal. These findings can be useful to the development of a slurry fuel technology for application in the vast existing conventional power plants.

2021 ◽  
Vol 8 ◽  
Author(s):  
Nurul Syazmimi Hamzah ◽  
Siti Shawalliah Idris ◽  
Norazah Abd Rahman ◽  
Noor Fitrah Abu Bakar ◽  
Sharmeela Matali

Agricultural residues have been traditionally used as energy resources for many years. In light of current environmental and fossil fuel supplies for energy applications, agricultural residues are regarded as sustainable supplies for energy production. However, the suitability to be renewable fuel and as a co-fuel in coal combustion facilities has to be investigated. A thermal analysis was conducted to investigate the effect of the blending and heating rate of the thermal behavior of Malaysian bituminous coal (Silantek), oil palm biomass (empty fruit bunch), and their blends using thermogravimetric analysis. The investigation was done in an inert atmosphere at the heating rate of 10, 20, and 40°C/min. Characteristics including proximate, ultimate, and calorific analyses were also examined. Six different mass ratios were selected from both samples to study the effect of blending of the two materials. The results showed that thermal degradation of empty fruit bunch (EFB) occurred in three stages while Silantek coal (SC) only involved two regions due to their different fuel properties. The blending of both SC/EFB did not follow their individual samples, which showed non-additive behavior suggesting that there is an interaction between coal and biomass. The outcome of this research provides insight on the behavior of Malaysian bituminous coal and oil palm biomass, which enhances knowledge for the future of energy generation.


2015 ◽  
Author(s):  
Bemgba Bevan Nyakuma

The thermal behaviour and decomposition kinetics of pelletized oil palm empty fruit bunch (OPEFB) was investigated in this study using thermogravimetric analysis (TGA). The OPEFB pellets were heated from room temperature to 1000 ºC at different heating rates; 5, 10 and 20 °C min-1 under inert atmosphere. Thermal degradation occurred in three steps; drying, devolatization and char decomposition. Subsequently, the Popescu method was applied to the TG/DTG data to determine the kinetic parameters of the OPEFB pellets. The activation energy, E, for different degrees of conversion, α = 0.05 to 0.7 are 36.60 kJ/mol to 233.90 kJ/mol with high correlation R2 values. In addition, the drying and decomposition of lignin reactions displayed lower E values compared to the devolatization characterized by high E value of 233 kJ/mol at α = 0.2. This indicates that the devolatization process is slower and requires higher energy requirement to reach completion than the other stages of thermal decomposition of the fuel under inert atmosphere. Keywords: decomposition, kinetics, oil palm, empty fruit bunch, pyrolysis.


2015 ◽  
Vol 1113 ◽  
pp. 770-775
Author(s):  
Hazlin Hamdan ◽  
Munawar Zaman Shahruddin ◽  
Ahmad Rafizan Mohamad Daud ◽  
Syed Shatir A. Syed-Hassan

Combustion behaviour study of coal-biooil slurry (CBS) fuel prepared at different ratios was conducted using Thermogravimetric Analyzer (TGA). The materials comprised of Clermont bituminous coal (Australia) and bio-oil, derived from Empty Fruit Bunch (EFB) by means of fast pyrolysis. The samples were heated from room temperature to 110°C and held for 10 minutes before the temperature was ramped to 1100°C and held for another 10 minutes at constant heating rate of 10°C/min under air atmosphere at constant flow rate of 50 mL/min. The proportions of CBS fuel at 50:50 blends were observed to have significant influence on the combustibility of the slurry blends. The addition of bio-oil will shifted the ignition temperature towards early devolatilization. Meanwhile, the DTG profiles of the blends, showed decomposition of VM and char indicating bio-oil to be more reactive than coal with highest degradation rate appears at the blend ratio of 50:50 biooil/coal. These findings could be useful to introduce a new application of bio-oil in energy mix generation into coal mixture to cater for coal consumption reduction strategy for future application in vast existing conventional power plants.


Author(s):  
Bemgba Bevan Nyakuma

The thermal behaviour and decomposition kinetics of pelletized oil palm empty fruit bunch (OPEFB) was investigated in this study using thermogravimetric analysis (TGA). The OPEFB pellets were heated from room temperature to 1000 ºC at different heating rates; 5, 10 and 20 °C min-1 under inert atmosphere. Thermal degradation occurred in three steps; drying, devolatization and char decomposition. Subsequently, the Popescu method was applied to the TG/DTG data to determine the kinetic parameters of the OPEFB pellets. The activation energy, E, for different degrees of conversion, α = 0.05 to 0.7 are 36.60 kJ/mol to 233.90 kJ/mol with high correlation R2 values. In addition, the drying and decomposition of lignin reactions displayed lower E values compared to the devolatization characterized by high E value of 233 kJ/mol at α = 0.2. This indicates that the devolatization process is slower and requires higher energy requirement to reach completion than the other stages of thermal decomposition of the fuel under inert atmosphere. Keywords: decomposition, kinetics, oil palm, empty fruit bunch, pyrolysis.


2012 ◽  
Author(s):  
Mark Woods ◽  
Michael Matuszewski ◽  
Robert Brasington

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4767
Author(s):  
Lifita N. Tande ◽  
Erik Resendiz-Mora ◽  
Valerie Dupont

Empty fruit bunch, a significant by-product of the palm oil industry, represents a tremendous and hitherto neglected renewable energy resource for many countries in South East Asia and Sub-Saharan Africa. The design and simulation of a plant producing pure hydrogen through autothermal reforming (ATR) of palm empty fruit bunch (PEFB) was carried out based on successful laboratory experiments of the core process. The bio-oil feed to the ATR stage was represented in the experiments and in the simulation by a surrogate bio-oil mixture of 11 organic compounds shown to be main constituents of PEFB oil from previous work, and whose combined elemental composition and volatility was determined to be as close as possible to that of the real PEFB bio-oil. The experiments confirmed that H2 yields close to equilibrium predictions were achievable using an in-house synthetised Rh-Al2O3 catalyst in a packed bed reactor. Initial sensitivity analysis on the plant revealed that feed molar steam to carbon ratio should not exceed 3 for the optimal design of the ATR hydrogen production plant. An overall plant efficiency of 39.4% was obtained for the initial design, this value was improved to 67.5% by applying pinch analysis to enhance the integration of heat in the design. The proposed design renders CO2 savings of about 0.56 kg per kg of raw PEFB processed. The proposed design and accompanying experimental studies together make a strong case on the possibility of polygeneration of H2, heat, and power from an otherwise discarded agricultural waste.


2017 ◽  
Vol 105 ◽  
pp. 297-302 ◽  
Author(s):  
Arif Darmawan ◽  
Dwika Budianto ◽  
Muhammad Aziz ◽  
Koji Tokimatsu

2021 ◽  
Vol 14 ◽  
pp. 1-11
Author(s):  
Haryanti Yahaya ◽  
Rozzeta Dollah ◽  
Norsahika Mohd Basir ◽  
Rohit Karnik ◽  
Halimaton Hamdan

Oil palm empty fruit bunch (EFB) biomass is a potential source of renewable energy. Catalytic fast-pyrolysis batch process was initially performed to convert oil palm EFB into bio-oil, followed by its refinement to jet bio-fuel. Crystalline zeolites A and Y; synthesised from rice husk ash (RHA), were applied as heterogeneous catalysts. The catalytic conversion of oil palm EFB to bio-oil was conducted at a temperature range of 320-400°C with zeolite A catalyst loadings of 0.6 - 3.0 wt%. The zeolite catalysts were characterised by XRD, FTIR and FESEM. The bio-oil and jet bio-fuel products were analysed using GC-MS and FTIR. The batch fast-pyrolysis reaction was optimised at 400°C with a catalyst loading of 1.0 wt%, produced 42.7 wt% yields of liquid bio-oil, 35.4 wt% char and 21.9 wt% gaseous products. Analysis by GCMS indicates the compound distribution of the liquid bio-oil are as follows: hydrocarbons (23%), phenols (61%), carboxylic acids (0.7%), ketones (2.7%), FAME (7.7%) and alcohols (0.8%). Further refinement of the liquid bio-oil by catalytic hydrocracking over zeolite Y produced jet bio-fuel, which contains 63% hydrocarbon compounds (C8-C18) and 16% of phenolic compounds.


Sign in / Sign up

Export Citation Format

Share Document