Round Head Screw Axis NC Machining Process Analysis

2014 ◽  
Vol 912-914 ◽  
pp. 761-764
Author(s):  
Xi Lian Diao

The ball screw shaft part of the shaft is typical of one of the parts is difficult to process, the current CNC machining parts with high precision is required to solve such a circular arc surface, the most effective processing tapered threaded surface and the cylindrical surface methods. Aiming at the characteristics of round threaded shaft, analyzed the methods and procedures CNC lathe machining parts, and gives a complete NC program. Program is produced in Dalian CKA6132 CNC lathe written.

2010 ◽  
Vol 42 ◽  
pp. 263-267
Author(s):  
Xin Long Kang ◽  
Dong Man Yu ◽  
Xue Ling Yang ◽  
Di Wang

This paper presents the methods and applications for the real-time control of CNC machining process quality in detail and clarifies the objectives of SPC for CNC machining, in order to enhance the understanding of the factors that cause instability to process system. Also, this paper adopts the methods and procedures for SPC to effectively serve the production of high-precision products for enterprises, in order to meet customers’ requirements and expectations.


2021 ◽  
Author(s):  
◽  
James Edward Bennett

<p>This thesis discusses the traditional use of (computer numerically controlled) CNC machining and the role of a designer to control the manipulation of (computer aided manufacturing) CAM software, CNC data and materials. The engaged designer has the capability to add qualities of digital tectonics onto a specified form through the process of working intimately with a CNC lathe. They experiment using abstract forms to find unique qualities that come from the cutting action of the tooling in a lathe. The designer takes on the role of the self-learner to become competent in the software, technology to apply complex textures and expressions.  The designer can capitalise on unforeseen events, adds the action of craft to this industrial production method, creates beauty and provokes an emotional connection. Understanding the potential in the design possibility is to accept the serendipitous influences that can be controlled and the inevitable moments that cannot.  The core of this research is to show how a designer claims authorship of their design at the making stage. They can define the margin of control and randomness, whether something has become too serendipitous, compromising the crafted form, or remained banal, repeating the precision machining, and releasing any character from the object. By finding the best design solution and replicating the same understanding a craftsperson has of their traditional tools. The designer observes, analyses, succeeds and fails, recognising the potential of their experimentation. Using Cross’s model of exploration, generation, evaluation and communication there is the strategy to see the unexpected, realise the potential and make it desirable. Learning the ability to manipulate digital surfaces and identify serendipitous qualities produced by the physical fingerprint of the machining process.  Opposing the machines’ engineering, expressing the marks of the tool on an object, the imprints behaving as fingerprints left on a surface, is a unique characteristic. Something that makes the end user want to experience, feel, move and use it every day. These surprising results may influence the future of how design is conducted with digital technologies and adding digital complexities inspired by traditional craft to design more interesting artefacts.</p>


2011 ◽  
Vol 418-420 ◽  
pp. 1851-1855 ◽  
Author(s):  
Bin Wu Wang ◽  
Ben Sheng Xu ◽  
Yan Hua Sun

Take the complex three-dimensional (3D) surfaces which consist of all kinds of curves, such as cosine, parabolic and elliptic as examples, the processing is analyzed to determine the reasonable feed routes. The method of parameter programming provided by SINUMERIK 802D system is applied to choose reasonable machining parameters. Using these parameters for NC programming, not only the roughing and finishing machining with different processing requirements can be met, but also the programming solutions are optimized and the NC program is briefer than that generated by CAM software. Furthermore, human-computer interaction can be achieved by means of assignment to the parameters.


2012 ◽  
Vol 605-607 ◽  
pp. 1444-1447
Author(s):  
Le Ping Liu ◽  
Qun Qun Gao ◽  
Guo Hong Deng

In order to solve the transmission precision of ball screw of High-speed & high-precision CNC lathe, design a kind of hydraulic cushion which can maintain transmission stiffness of components. Use the axial strain output of hydraulic cushion to ensure pre-stretching force of ball screw is constant to maintain its constant transmission stiffness. Practice has proved that there are good linear characteristics between the axial strain output of hydraulic cushion and the input of oil pressure.


2021 ◽  
Author(s):  
◽  
James Edward Bennett

<p>This thesis discusses the traditional use of (computer numerically controlled) CNC machining and the role of a designer to control the manipulation of (computer aided manufacturing) CAM software, CNC data and materials. The engaged designer has the capability to add qualities of digital tectonics onto a specified form through the process of working intimately with a CNC lathe. They experiment using abstract forms to find unique qualities that come from the cutting action of the tooling in a lathe. The designer takes on the role of the self-learner to become competent in the software, technology to apply complex textures and expressions.  The designer can capitalise on unforeseen events, adds the action of craft to this industrial production method, creates beauty and provokes an emotional connection. Understanding the potential in the design possibility is to accept the serendipitous influences that can be controlled and the inevitable moments that cannot.  The core of this research is to show how a designer claims authorship of their design at the making stage. They can define the margin of control and randomness, whether something has become too serendipitous, compromising the crafted form, or remained banal, repeating the precision machining, and releasing any character from the object. By finding the best design solution and replicating the same understanding a craftsperson has of their traditional tools. The designer observes, analyses, succeeds and fails, recognising the potential of their experimentation. Using Cross’s model of exploration, generation, evaluation and communication there is the strategy to see the unexpected, realise the potential and make it desirable. Learning the ability to manipulate digital surfaces and identify serendipitous qualities produced by the physical fingerprint of the machining process.  Opposing the machines’ engineering, expressing the marks of the tool on an object, the imprints behaving as fingerprints left on a surface, is a unique characteristic. Something that makes the end user want to experience, feel, move and use it every day. These surprising results may influence the future of how design is conducted with digital technologies and adding digital complexities inspired by traditional craft to design more interesting artefacts.</p>


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


2014 ◽  
Vol 543-547 ◽  
pp. 4698-4701
Author(s):  
Juan Wang

During the processing of aircraft and other high precision machinery workpieces, if using the traditional machining methods, it will consume a amount of machining costs, and the mechanical processing cycle is long. In this context, this paper designs a kind of robot intelligent processing system with high precision machinery. And it has realized the intelligent online control on the machining process by using the high precision machining intelligent online monitoring technology and the numerical simulation prediction technology. Finally, this system is introduced into the process of data mining for volleyball game, and designs the partial differential variational data mining model, which has realized the key parameter data mining of volleyball games service system, and has provided reliable parameters and technical support for the training of volleyball players.


Author(s):  
Chengyong Zhang ◽  
Yaolong Chen

In this paper, the active-disturbance-rejection control (ADRC) is applied to realize the high-precision tracking control of CNC machine tool feed drives. First, according to the number of the feedback channel, the feed systems are divided into two types: signal-feedback system, e.g., linear motor and rotary table, and double-feedback system, e.g., ball screw feed drive with a load/table position feedback. Then, the appropriate controller is designed to ensure the closed-loop control performance of each type of system based on the idea of ADRC. In these control frameworks, the extended state observers (ESO) estimate and compensate for unmodeled dynamics, parameter perturbations, variable cutting load, and other uncertainties. For the signal-feedback system, the modified ADRC with an acceleration feedforward term is used directly to regulate the load/table position response. However, for the double-feedback system, the ADRC is applied only to the motor position control, and a simple PI controller is used to achieve the accurate position control of the load. In addition, based on ADRC feedback linearization, a novel equivalent-error-model based feedforward controller is designed to further improve the command following performance of the double-feedback system. The experimental results demonstrate that the proposed controllers of both systems have better tracking performance and robustness against the external disturbance compared with the conventional P-PI controller.


2013 ◽  
Vol 395-396 ◽  
pp. 1008-1014
Author(s):  
Yu Li ◽  
Chao Sun

Chatter has been a problem in CNC machining process especially during machining thin-walled components with low stiffness. For accurately predicting chatter stability in machining Ti6Al4V thin-walled components, this paper establishes a chatter prediction method considering of cutting parameters and tool path. The fast chatter prediction method for thin-walled components is based on physical simulation software. Cutting parameters and tool path is achieved through the chatter stability lobes test and finite element simulation. Machining process is simulated by the physical simulation software using generated NC code. This proposed method transforms the NC physical simulation toward the practical methodology for the stability prediction over the multi-pocket structure milling.


Sign in / Sign up

Export Citation Format

Share Document