Synthesis of New Bio-Based Thermoset Resin from Palm Oil

2014 ◽  
Vol 931-932 ◽  
pp. 78-82 ◽  
Author(s):  
Alireza Fakhari ◽  
Abdul Razak Rahmat ◽  
Mat Uzir Wahit ◽  
Yeong Shoot Kian

New bio-based thermosetting resin was synthesized from palm oil. In this study the epoxy groups presented on the epoxidized palm oil (EPO) were first acrylated and then further maleinized. The acrylation reaction was done by introducing acrylic acid into epoxy group of the epoxidized palm oil. Hydroquinone and triethylamine were used as inhibitor and catalyst, respectively. This reaction was confirmed by Fourier Transform Infrared Spectroscopy (FTIR). To render acid groups on the resulting monomer, the acrylated epoxidized palm oil (AEPO) was further reacted with maleic anhydride. The resulting maleinated acrylated epoxidized palm oil (MAEPO) was characterized by FTIR and Nuclear Magnetic Resonance Spectroscopy (1H NMR).

2013 ◽  
Vol 812 ◽  
pp. 275-280
Author(s):  
Yahaya Siti Munira ◽  
Ahmad Faiza Mohd ◽  
Mohamed Rahmah

In this study, palm oil-based polyols were prepared and characterized. In order to prepare the polyol, Epoxidized palm oil (EPO) was reacted with glycerol and undergoes ring opening reaction. The synthesized oil was characterized by oxygen oxirane content titration (OOC), hydroxyl value test (HV), fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR). Based on the FTIR spectrum of polyols, the disappearance of epoxy groups at 825cm-1, 843cm-1 and the emergence of hydroxyl group at 3394cm-1 are obvious indicating that hydroxyl group of the polyols formed. In NMR, the presence of new signal at δ 3.46ppm (-CH-OH) showed the attachment of hydroxyl group onto the epoxidized palm oil.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Selinay Y. Erişkin ◽  
Fatma Ç. Telli ◽  
Yeliz Yıldırım ◽  
Yeşim Salman

The synthesis of 5,6-O-isopropylidene-1,2-O-(R)-trichloroethylidene-α-D-glucofuranose (compound1) and 5,6-O-isopropylidene-1,2-O-(R)-trichloroethylidene-3-O-(2′,3′-epoxypropan-1′-yl)-α-D-glucofuranose (compound2) was carried out. The synthesized compounds1and2were characterized by nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TG). The FTIR and1H NMR spectra showed that the epoxy group in compound2was attached by means of a nucleophilic substitution reaction. The activation energies for thermal degradation of compounds1and2were calculated from their TG data by using the Kissinger-Akahira-Sunose (KAS) and Tang methods.


1973 ◽  
Vol 46 (2) ◽  
pp. 350-358 ◽  
Author(s):  
Yasuhide Alaki ◽  
Toshio Yoshimoto ◽  
Mamoru Imanari ◽  
Makoto Takeuchi

Abstract Carbon-13 proton nuclear magnetic resonance (NMR) of poly(butadiene) s consisting of various ratios of cis-1,4-, trans-1,4- and 1,2-structures were measured by the pulsed Fourier transform NMR method. The spectra of poly(butadiene)s with two or three kinds of butadiene configurations show several new signals which were not observed for homopolymers comprising merely one kind of butadiene configuration. All of these peaks are ascribed to the carbons linked by different kinds of configurations. From these results, the configurational sequence structure of butadiene units in polymer chains has been revealed.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chuanjiang Li ◽  
Hui Wang ◽  
Manuel Juárez ◽  
Eric Dongliang Ruan

Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs) formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR) spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135) and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY) and 2D nuclear overhauser enhancement spectroscopy (NOESY). The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.


1996 ◽  
Vol 79 (2) ◽  
pp. 423-425 ◽  
Author(s):  
George A Moniz ◽  
Gerald B Hammond

Abstract A new method for the separation and identification of ambrein in ambergris using adsorption chromatography and 1H and 13C Fourier transform nuclear magnetic resonance spectroscopy (FT-NMR) is presented. We demonstrated the effectiveness of this method by analyzing an approximately 85-year-old sample of suspected ambergris from the New Bedford Whaling Museum (New Bedford, MA). Results prove that ambrein remains a major constituent of ambergris even after 85 years of storage under ordinary conditions.


Sign in / Sign up

Export Citation Format

Share Document