The Effects of Immobilization Conditions and Materials on the Desulfurization Performance of Immobilized UP-3

2014 ◽  
Vol 936 ◽  
pp. 740-745
Author(s):  
Ning Guo ◽  
Ying Fei Hou ◽  
Ya Ya Gu ◽  
Chun Hu Li

Immobilization of the bacterium Agrobacterium tumefaciens UP-3, which was isolated from soil and sewage in the Shengli Oilfield, was studied in this paper. The suitable culture condition of growth cells was determined. The effects of immobilization conditions and materials on the desulfurization performance of immobilized cells were investigated. The results showed that the immobilized cells with mixture of sodium alginate (SA) and polyvinyl alcohol (PVA) as the immobilized carrier had good biodesulfurization characteristics; The optimum operation immobilization conditions are 4° C, the concentration of SA being 3% (w), the concentration of PVA and SA being 7% (w), and the ratio of carriers (ml) and cells (g) being 20. When DBT addition is 2.7 mM, the DBT degradation rate of immbobilized cells is above 60%.

2018 ◽  
Vol 6 (2) ◽  
pp. 169
Author(s):  
I Made Yoga Saputra ◽  
Nyoman Semadi Antara ◽  
Ida Bagus Wayan Gunam

The purpose of this study was to determine the concentration and size of Na-alginate beads that have the highest degradation activity of dibenzothiophene. Biodesulfurization (BDS) of dibenzothiophene (DBT) was performed using 3 Na-alginate concentrations and 3 different beads sizes in the oil model system. Biodesulfurization was performed with incubation for 24 hours. The previous research showed that sodium alginate (Na-alginate) was an appropriate immobilizing agent compared to other immobilized materials. Na-alginate 4% show the activity of the degradation of the most good that is 66.33% (bead size 2 mm), 62.99% (bead size 3 mm), 59.93% (bead size 4 mm), for concentration of 3% Na-alginate showed 65.58% (bead size 2 mm), 61.68% (bead size 3 mm) and 60.43% (bead size 4 mm), while concentration 5% showed the most low that is 64.86% (bead size 2 mm), 61.01% (bead size 3 mm), and 58.89% (bead size 4 mm). The stability test showed Na-alginate 4% have the stability and durability of the bead stronger, the test showed Na-alginate can be used up to five repeat and still have degradation activity. Key words: Biodesulfurization, Dibenzothiophene, Immobilized cells, Na-alginate.


2020 ◽  
Vol 82 (11) ◽  
pp. 2296-2303
Author(s):  
Pin Zhang ◽  
Xiaoli Wang ◽  
Shitao Peng ◽  
Xiumei Tian ◽  
Zhaokun Li ◽  
...  

Abstract In this study, the removal effect of free and immobilized bacteria on crude oil was determined. Sodium alginate and polyvinyl alcohol were used as embedding agent, and ramie was modified as an adsorbent to immobilize free bacteria. The conditions for preparing immobilized pellets were optimized using the response surface method, and the best combination was simulated and obtained by Design-Expert 8.0. The best degradation rate of immobilized bacteria was 75.52%. The degradation by free bacteria and immobilized bacteria showed that the selected microorganisms had a good degradation effect on petroleum hydrocarbons.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 724
Author(s):  
Miguel L. Sousa-Dias ◽  
Vanessa Branco Paula ◽  
Luís G. Dias ◽  
Letícia M. Estevinho

This work studied the production of mead using second category honey and the immobilized cells of Saccharomyces cerevisiae in sodium alginate, with concentrations of 2% and 4%, and their reuse in five successive fermentations. The immobilized cells with 4% alginate beads were mechanically more stable and able to allow a greater number of reuses, making the process more economical. The fermentation’s consumption of sugars with free cells (control) and immobilized cells showed a similar profile, being completed close to 72 h, while the first use of immobilized cells finished at 96 h. The immobilized cells did not significantly influence some oenological parameters, such as the yield of the consumed sugars/ethanol, the alcohol content, the pH and the total acidity. There was a slight increase in the volatile acidity and a decrease in the production of SO2. The alginate concentrations did not significantly influence either the parameters used to monitor the fermentation process or the characteristics of the mead. Mead fermentations with immobilized cells showed the release of cells into the wort due to the disintegration of the beads, indicating that the matrix used for the yeast’s immobilization should be optimized, considering the mead production medium.


2021 ◽  
Author(s):  
Niu Yuhua ◽  
Han Xingxing ◽  
Song Jie ◽  
Huang Liangxian

Novel magnetic gel beads were successfully fabricated via polyvinyl alcohol (PVA) and sodium alginate (SA) double cross-linked network loaded ferroferric oxide@potassium humate (Fe3O4@KHA) nanoparticles. PVA/SA/Fe3O4@KHA gel beads were found to...


2010 ◽  
Vol 165 (2) ◽  
pp. 465-473 ◽  
Author(s):  
Jian Hua Chen ◽  
Guo Ping Li ◽  
Qing Lin Liu ◽  
Jian Cong Ni ◽  
Wen Bing Wu ◽  
...  

2015 ◽  
pp. 207-218
Author(s):  
Jovana Djuran ◽  
Zorana Roncevic ◽  
Bojana Bajic ◽  
Sinisa Dodic ◽  
Jovana Grahovac ◽  
...  

Ethanol is an important industrial chemical with emerging potential as a biofuel to replace fossil fuels. In order to enhance the efficiency and yield of alcoholic fermentation, combined techniques such as cells immobilization and media optimization have been used. The aim of this study was the optimization of sodium alginate concentration and glucose and yeast extract content in the media for ethanol production with immobilized cells of Saccharomyces cerevisiae. Optimization of these parameters was attempted by using a Box-Behnken design using the response surface methodology. The obtained model predicts that the maximum ethanol content of 7.21% (v/v) is produced when the optimal values of sodium alginate concentration and initial content of glucose and yeast extract in the medium are 22.84 g/L, 196.42 g/L and 3.77 g/L, respectively. To minimize the number of yeast cells "eluted" from the alginate beads and residual glucose content in fermented media, additional two sets of optimization were made. The obtained results can be used for further techno-economic analyses of the process to select the optimum conditions of the fermentation process for industrial application.


Sign in / Sign up

Export Citation Format

Share Document