scholarly journals Mead Production Using Immobilized Cells of Saccharomyces cerevisiae: Reuse of Sodium Alginate Beads

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 724
Author(s):  
Miguel L. Sousa-Dias ◽  
Vanessa Branco Paula ◽  
Luís G. Dias ◽  
Letícia M. Estevinho

This work studied the production of mead using second category honey and the immobilized cells of Saccharomyces cerevisiae in sodium alginate, with concentrations of 2% and 4%, and their reuse in five successive fermentations. The immobilized cells with 4% alginate beads were mechanically more stable and able to allow a greater number of reuses, making the process more economical. The fermentation’s consumption of sugars with free cells (control) and immobilized cells showed a similar profile, being completed close to 72 h, while the first use of immobilized cells finished at 96 h. The immobilized cells did not significantly influence some oenological parameters, such as the yield of the consumed sugars/ethanol, the alcohol content, the pH and the total acidity. There was a slight increase in the volatile acidity and a decrease in the production of SO2. The alginate concentrations did not significantly influence either the parameters used to monitor the fermentation process or the characteristics of the mead. Mead fermentations with immobilized cells showed the release of cells into the wort due to the disintegration of the beads, indicating that the matrix used for the yeast’s immobilization should be optimized, considering the mead production medium.

2015 ◽  
pp. 207-218
Author(s):  
Jovana Djuran ◽  
Zorana Roncevic ◽  
Bojana Bajic ◽  
Sinisa Dodic ◽  
Jovana Grahovac ◽  
...  

Ethanol is an important industrial chemical with emerging potential as a biofuel to replace fossil fuels. In order to enhance the efficiency and yield of alcoholic fermentation, combined techniques such as cells immobilization and media optimization have been used. The aim of this study was the optimization of sodium alginate concentration and glucose and yeast extract content in the media for ethanol production with immobilized cells of Saccharomyces cerevisiae. Optimization of these parameters was attempted by using a Box-Behnken design using the response surface methodology. The obtained model predicts that the maximum ethanol content of 7.21% (v/v) is produced when the optimal values of sodium alginate concentration and initial content of glucose and yeast extract in the medium are 22.84 g/L, 196.42 g/L and 3.77 g/L, respectively. To minimize the number of yeast cells "eluted" from the alginate beads and residual glucose content in fermented media, additional two sets of optimization were made. The obtained results can be used for further techno-economic analyses of the process to select the optimum conditions of the fermentation process for industrial application.


2019 ◽  
Vol 79 (7) ◽  
pp. 1387-1396 ◽  
Author(s):  
Moslem Abarian ◽  
Mehdi Hassanshahian ◽  
Akramsadat Esbah

Abstract Phenols are distributed either as natural or artificial mono-aromatic compounds in various environmental sites as major pollutants. The objective of this study was the immobilization of the phenol degrading bacteria P. putida P53 and A. scleromae P69 in sodium-alginate beads and sawdust as carriers and evaluate the biodegradation ability. The biodegradation ability of strains in free form were evaluated and P. putida P53 was shown to biodegrade up to 1,800 mg/L phenol. Bacterial biomass was prepared and attached to carrier with entrapment and attachment methods. Prepared beads were added to Erlenmeyer flasks containing different concentrations of phenol in BH medium (1,800, 2,200, 2,600 and 3,000 mg/L). According to the results, phenol biodegradation efficiency of immobilized bacteria in sawdust was more than free form. Strain P53 had better biodegradation than P69 strain. Attachment and entrapments into carriers had positive results, Scanning electron micrograph (SEM) images indicated that alginate beads were globular shapes (10 nm), and strains aggregated between the large cavities of the matrix. Comparison of sawdust and alginate as carriers for degradation of phenol at high concentrations demonstrated that sawdust improved biodegradation better, and immobilized P53 into sawdust entrapped in sodium-alginate beads can be used for biodegradation purposes.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9429-9443
Author(s):  
Quin Emparan ◽  
Razif Harun ◽  
Yew Sing Jye

The use of freely suspended cells of microalgae culture to treat wastewater is of current global interest because of their effective photosynthetic uptake of pollutants, carbon dioxide sequestration, and biomass production for desirable high value-products. Biomass immobilization is a promising option to overcome the harvesting problem that is encountered when using free-cells upon completion of the wastewater treatment process. In this study, Nannochloropsis sp. cells were immobilized in sodium alginate beads to eliminate the harvesting limitation. The microalgal beads were further cultivated in treated palm oil mill effluent (TPOME) for removal of chemical oxygen demand (COD). The effect of POME concentration on COD removal and microalgal cells growth was investigated, respectively. It was found that the maximum biomass concentration of 1.23 g/L and COD removal of 55% from 10% POME were achieved after 9 days. An increment of POME concentration did not cause any improvement to the treatment efficiency due to the inhibitory effect of high initial COD of POME on the biomass concentration and was further responsible for low COD removal. The immobilized cells showed a systematic growth, demonstrating that the beads are biocompatible as immobilization carrier. In conclusion, the immobilized microalgal cells could be a viable alternative technology system for POME treatment as well as biomass production.


2015 ◽  
Vol 21 (3) ◽  
pp. 331 ◽  
Author(s):  
Maurecilne Lemes Silva ◽  
Daniela Lopes Paim Pinto ◽  
Miguel Pedro Guerra ◽  
Elisonete R. Garcia Lanii ◽  
Ilio Fealho Carvalho ◽  
...  

Passiflora cincinnata is a wild species of passion fruit with a wide geographical distribution. It has vigorous growth, climbing habit and very showy and fragrant flowers. The aim of the present investigation was to obtain synthetic seeds from encapsulated zygotic and somatic embryos of P. cincinnata, cultivated under different conditions. Precotyledonary and cotyledonary stage embryos were obtained from zygotic embryos cultivated on MS medium supplemented with 18.1 μM of 2,4-Acid-dichlorophenoxyacetic (2,4-D) and 4.5 μM of Benzyladenine (BA). Zygotic embryos and somatic embryos stages were encapsulated using sodium alginate (2.5% w v-1) and CaCl2.2H2O (1 mM) as complexing agent. The zygotic and somatic embryos were encapsulated in a matrix containing (I) sodium alginate, (II) sodium alginate + artificial endosperm and (III) sodium alginate + artificial endosperm supplemented with activated charcoal (0.15% w/v). Zygotic embryos encapsulated in the matrix (I), matrix (II) and matrix (III) and cultivated in flasks, germinated at rates of 79%, 76% and 86% respectively. The cotyledonary somatic embryos encapsulated in the 3 different matrices showed better germination rates when cultivated on cellulose plugs, with more than 50% of embryos converted into plants. Precotyledonary somatic embryos did not germinated regardless the matrix and cultivation. When cultivating the alginate beads ex vitro, both substrate Plantmax and Florialite showed low number of germinated embryos, and the best result (12.67%) were obtained using Florialite and embryos encapsulated in the matrix (I).


2018 ◽  
Vol 6 (2) ◽  
pp. 169
Author(s):  
I Made Yoga Saputra ◽  
Nyoman Semadi Antara ◽  
Ida Bagus Wayan Gunam

The purpose of this study was to determine the concentration and size of Na-alginate beads that have the highest degradation activity of dibenzothiophene. Biodesulfurization (BDS) of dibenzothiophene (DBT) was performed using 3 Na-alginate concentrations and 3 different beads sizes in the oil model system. Biodesulfurization was performed with incubation for 24 hours. The previous research showed that sodium alginate (Na-alginate) was an appropriate immobilizing agent compared to other immobilized materials. Na-alginate 4% show the activity of the degradation of the most good that is 66.33% (bead size 2 mm), 62.99% (bead size 3 mm), 59.93% (bead size 4 mm), for concentration of 3% Na-alginate showed 65.58% (bead size 2 mm), 61.68% (bead size 3 mm) and 60.43% (bead size 4 mm), while concentration 5% showed the most low that is 64.86% (bead size 2 mm), 61.01% (bead size 3 mm), and 58.89% (bead size 4 mm). The stability test showed Na-alginate 4% have the stability and durability of the bead stronger, the test showed Na-alginate can be used up to five repeat and still have degradation activity. Key words: Biodesulfurization, Dibenzothiophene, Immobilized cells, Na-alginate.


2006 ◽  
Vol 63 (6) ◽  
pp. 534-539 ◽  
Author(s):  
Gisele Cristina Ravaneli ◽  
Leonardo Lucas Madaleno ◽  
Leandro Eduardo Presotti ◽  
Miguel Angelo Mutton ◽  
Márcia Justino Rossini Mutton

The spittlebug (Mahanarva fimbriolata) has become a key pest of the sugarcane crop in Brazil with the increase of green-cane harvesting, causing stalk yield and cane quality losses. This research was undertaken to evaluate the effects of the spittlebug (Mahanarva fimbriolata) on cane quality and juice fermentation. The experiment was arranged in a completely randomized 5 × 2 factorial design, with five spittlebug infestation levels (0-0.5; 0.6-2.5; 2.6-5; 5.1-8; 8.1-12.5 nymphs m-1), controlled or not with thiamethoxam (0.2 kg of active ingredient ha-1). To conduct fermentation, Saccharomyces cerevisiae (fresh and pressed baker's yeast) was inoculated to musts at a concentration of 30 g L-1. Microbiological analyses were performed at the beginning, middle and end of the fermentation process. The alcohol content and total residual reducing sugars were measured in the wine. Spittlebug attack influenced negatively sugarcane quality, yeast cell and bud viability, and wine alcohol content. Insecticide application resulted in higher cane quality and cell and bud viabilities, resulting in increased fermentation yield.


2021 ◽  
Vol 83 (2) ◽  
pp. 107-115
Author(s):  
Ida Bagus Wayan Gunam ◽  
Ardiansyah Sitepu ◽  
Nyoman Semadi Antara ◽  
I Gusti Ayu Lani Triani ◽  
I Wayan Arnata ◽  
...  

Biodelfurization of petroleum has emerged as a potential alternative to the hydrodesulfurization and oxidative desulfurization processes. However, the main obstacle in its commercial application is the efficiency and practicality of using bacterial cells. Pseudomonas sp. strain KWN5 was tested for the ability to use dibenzothiophene (DBT) in n-tetradecane as the sole sulfur source with two phase oil-water system. The biodesulfurization ability of strain KWN5 was evaluated by immobilized cells with dibenzothiophene as substrates. The cells immobilized by entrapping them with sodium alginate (SA) had high DBT biodesulfurization activity and could degrade 100 mg DBT/L in n-tetradecane of 46.76–100%, depended on concentrations of sodium alginate and cells within 24 h at 37oC with shaking at 160 rpm. The combination of SA concentration of 3% (w/v) with bacterial cells OD660 40 (25.52 mg DCW/mL) has an optimal biodesulfurization activity on 100 mg DBT/L in n-tetradecane, which is equal to 71.85% biodesulfurization. The immobilized cells of Pseudomonas sp. strain KWN5 in alginate beads were more efficient for the degradation of DBT and can be reused for five cycles (220 h) without any loss in their activity. The results of this study clearly show the role of the effects of cell immobilization in increasing the process of biodesulfurization.


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


Sign in / Sign up

Export Citation Format

Share Document