Effect of Boron Addition on Microstructure and Mechanical Properties of AZ84 Mg Alloy

2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.

2016 ◽  
Vol 852 ◽  
pp. 22-27
Author(s):  
Ming Bo Wang ◽  
An Gang Ning ◽  
Hai Ding Liu ◽  
Yong You Li ◽  
Dong Zhe Wang ◽  
...  

The effects of different solid-solution temperature and holding time on the alloy structure and mechanical properties of alloy 718 were investigated. The results show that the grain size grows up as the solid-solution temperature elevates and the holding time prolongs. The grain size increases slowly because undissolved delta phase restrains the growth of grains when solid-solution temperature is below 1000°C, whereas the grain size increases quickly when solid-solution temperature is beyond 1050°C. At room temperature, the strength and hardness of alloy 718 decrease with solution treatment temperature increasing, however, the ductility and toughness of alloy 718 both increase, and the brittle fracture of sample turns into ductile fracture.


2011 ◽  
Vol 378-379 ◽  
pp. 744-747 ◽  
Author(s):  
Jeong Min Kim ◽  
Joon Sik Park ◽  
Ho Seob Yun ◽  
Seung Jin Lee ◽  
Seong Uk An

Cast IN738LC alloy mainly consists of primary gamma matrix, gamma prime precipitates, and carbides. SEM-EDS analysis results suggested that most of the carbides are MC type ones that possess high Ti or Ta contents. MC carbides were partly dissolved into the matrix during the solid solution treatment, and the morphology and size of carbides were influenced by the solid solution treatment temperature. Characteristics of gamma prime precipitates were also significantly affected by the solid solution treatment conditions. Single or duplex size distributions of gamma prime precipitates were obtained depending on the solid solution treatment condition. Higher tensile strength was obtained in the case of finer precipitation size and in the case of single size distribution as compared with that of duplex size distribution.


2010 ◽  
Vol 129-131 ◽  
pp. 886-890
Author(s):  
Da Wei Cui

The influence of solution annealing on the microstructure and mechanical properties of high nitrogen Fe-Cr-Mn-Mo-N austenitic stainless steels prepared by MIM was investigated. The results show that the solution treatment can improve the microstructure and properties of the stainless steels significantly. The sintered specimens before solution annealing consist of γ-austenite and embrittling intergranular Cr2N precipitates, showing a low mechanical property. After solid solution annealing, the specimens reveal a fully austenitic structure without any intergranular nitrides, whose tensile properties are much higher than those without solution annealing, which is attributed to the elimination of the nitride precipitation along the grain boundaries and the greater amount of nitrogen retained in solid solution. A mixed mode of intergranular and dimple fracture happen to the specimens before solid solution treatment, while a completely tough fracture of dimple happen to those after solid solution treatment.


Author(s):  
N. S. Cheruvu ◽  
V. P. Swaminathan ◽  
C. D. Kinney

Degradation of microstructure and mechanical properties of a service run GTD-111 DS blade was evaluated. The blade was coated with a CoCrAlY coating (GT-29) and had operated on a GE Model MS 5002 engine for 54,850 hours. To recover the microstructure of the degraded blade, the effect of solution treatment temperature on the microstructure and properties was evaluated. The blanks removed from the airfoil tip section were given a commonly used partial solution treatment 2050°F (1120°C) for GTD-111 and a high temperature solution treatment 2175°F (1190°C) prior to the partial solution and aging treatments. Microstructure and creep test results of these heat treated specimens revealed that the high temperature solution treatment was necessary to recover the microstructure and properties of in-service degraded GTD-111 DS buckets.


2012 ◽  
Vol 476-478 ◽  
pp. 118-121 ◽  
Author(s):  
Shi Xing Zhang ◽  
Shao Min Qu

Process of solution treatment of 6061 aluminum alloy was done by hardness test and microanalysis in this paper. The effects of different solution treatment temperature on the microstructure and mechanical properties of 6061 aluminum alloy were studied and the influence of overburning on the microstructure and mechanical properties of 6061 aluminum alloy were also analyzed. The experimental results show that overburning occurring while 6061 aluminum alloy is heated above 580°C . The hardness measurements and microstructure analysis results show that the hardness decreased, grain boundary becomes trigemanal and compounded –melting structure (burnt structure) appeared when overburning occuring for this alloy .


Sign in / Sign up

Export Citation Format

Share Document