Processing Map of Mg-13Al-3Ca-3Zn-1Nd-0.2Mn Magnesium Alloy

2014 ◽  
Vol 941-944 ◽  
pp. 48-53
Author(s):  
Wei Chen ◽  
Gang Chen ◽  
Jing Zhai ◽  
Li Ma

Compression tests of Mg-13Al-3Ca-3Zn-1Nd-0.2Mn Magnesium alloy as-extruded had been performed in the compression temperature range from 200°C to 400°C and the strain rate range from 0.001 s−1 to 10 s−1 and the flow stress data obtained from the tests were used to develop the power dissipation map, instability map and processing map. The most unsuitable zones in the power dissipation map including 200°C - 315°C and 0.01s-1- 0.1s-1 zone, 315°C - 400°C and 0.001s-1- 0.01s-1zone and 340°C - 360°C and 0.32 s-1- 0.56 s-1zone. The most unsuitable zones in the instability map are 310°C - 400°C, 0.001s-1to 0.56 s-1zone and 330°C - 400°C, 1s-1to 10 s-1zone. The most suitable temperature range is 330°C - 400°C and most optimal strain rate ranges are 1 s-1- 10 s-1and 0.001s-1- 0.56 s-1.

2014 ◽  
Vol 915-916 ◽  
pp. 588-592
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma

Compression tests of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn Magnesium alloy as-extruded had been performed in the compression temperature range from 200°C to 350°C and the strain rate range from 0.001 s1to 1 s1and the flow stress data obtained from the tests were used to develop the power dissipation map, instability map and processing map. The optimum parameters for hot working of the alloy had been determined. According to the processing maps, the most optimal temperature range is 280°C to 350°C and most optimal strain rate range is 0.001 S-1to 1 S-1.


2014 ◽  
Vol 33 (4) ◽  
pp. 369-375 ◽  
Author(s):  
Mingliang Wang ◽  
Peipeng Jin ◽  
Jinhui Wang

AbstractThe deformation behavior of 7005 alloy was studied by hot compression tests. The processing map was constructed by superimposing the instability map over the power dissipation map at a strain of 0.7 using the corrected flow stress data to eliminate the effect of friction. Microstructural examination was performed for validation. It can be found that the flow stresses increase with the decrease of deformation temperature or the increase of strain rate. At the relatively high strain rates, the material exhibits flow instability manifesting as adiabatic shear bands or flow localization. A large volume of coarse precipitations distributing in the grain boundaries in one of the peak efficiency domains: 275–325 °C/0.0005–0.001 s−1, which may result in inter-granular corrosion and spalling layer, should be avoided in the final deformed alloy. The optimum hot working domain is the temperature range of 400–450 °C and strain rate range of 0.0005–0.005 s−1, at which DRX is identified.


2013 ◽  
Vol 712-715 ◽  
pp. 58-64
Author(s):  
Jing Qi Zhang ◽  
Hong Shuang Di ◽  
Xiao Yu Wang

In the present study, deformation heating generated by plastic deformation and its effect on the processing maps of Ti-15-3 titanium alloy were investigated. For this purpose, hot compression tests were performed on a Gleeble-3800 thermo-mechanical simulator in the temperature range of 850-1150 °C and strain rate range of 0.001-10 s1. The temperature rise due to deformation heating was calculated and the as-measured flow curves were corrected for deformation heating. Using the as-measured and corrected flow stress data, the processing maps for Ti-15-3 titanium alloy at a strain of 0.5 were developed on the basis Murty‘s and Babu’s instability criteria. The results show that both the instability maps based the two instability criteria are essentially similar and are characterized by an unstable region occurring at strain rates higher than 0.1 s1for almost the entire temperature range tested. The unstable regions are overestimated from the as-measured data due to the effect of deformation heating, indicating a better workability after correcting the effect of deformation heating. This is further conformed by the analysis based on strain rate sensitivity.


Author(s):  
Mohd Abdul Wahed ◽  
Amit Kumar Gupta ◽  
Nitin Ramesh Kotkunde ◽  
Swadesh Kumar Singh

A processing map plays a major role in indicating safe and failure regions of a process conducted in a hot working regime. It also shows the response of a material, by indicating changes in the microstructural evolution through temperature. In the present study, a processing map has been developed depending on the flow stress data of Ti-6Al-4V alloy sheet in a strain rate range of 10−2 /s to 10−4 /s and over a temperature range of 700°C to 900°C in order to identify the presence of superplasticity region. The flow stress data have been acquired on the basis of temperature, strain and strain rate by conducting hot uniaxial tensile tests. Based on this, a power dissipation map is obtained to show the percentage of efficiency, as it is directly related to the amount of internal entropy produced. In addition, an instability map is also obtained, as it identifies the flow instability that are to be avoided during hot working process. Finally, a processing map has been established by overlaying instability map on efficiency map. The results clearly reveal that the superplastic deformation occurs within a temperature range of 750°C to 900°C at a strain rate of 10−4 /s, without any flow instability in this region.


2012 ◽  
Vol 490-495 ◽  
pp. 3423-3426 ◽  
Author(s):  
Xin Zhao ◽  
Hong Zhao ◽  
Rui Zhang

The hot deformation characteristics of TC18 titanium alloy were studied in the temperature range 750-850°C and strain rate range 0.001-1 s-1 by using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results reveal that the flow stress of TC18 is sensitive to strain rate. Processing map at stain of 0.6 reveals two domains: one is centered at 750°C and 0.001s-1; another is centered at 850°C and 0.001s-1. The maximum efficiency is more than 60%. According to the maps, the zone with the temperature range of 750-850°C and strain rate range of 0.01-0.001s-1 may be suitable for hot working


2013 ◽  
Vol 873 ◽  
pp. 3-9 ◽  
Author(s):  
Ming Liang Wang ◽  
Pei Peng Jin ◽  
Jin Hui Wang ◽  
Li Han

The compression tests of solution treatment ZL109 alloy have been performed in the compression temperature range from 250°C to 450°C and the strain rate range from 0.0005s-1to 0.5s-1. A processing map has been developed on the basis of flow stress data obtained as a function of temperature and strain rate, which revealed two domains of hot working for the alloy: one is situated at temperature between 270°C and 340°C with strain rate between 0.05s-1and 0.5s-1, the other is situated at the temperature between 380°C and 450°C with strain rate between 0.0005s-1and 0.004s-1. Combining with the processing map, the optimum parameters of hot working for ZL109 alloy are that 300°C/0.5s-1and 450°C/0.0005s-1, respectively. Microstructure observations indicated that DRX occurred in both these domains. The instable zones, i. e., adiabatic shear bands formation, wedge cracking, were also identified in the processing map and microstructural examination was performed for validation.


2004 ◽  
Vol 449-452 ◽  
pp. 577-580
Author(s):  
Young Sang Na ◽  
Young Mok Rhyim ◽  
J.Y. Lee ◽  
Jae Ho Lee

In order to quantitatively analyze the critical strain for the initiation of dynamic recrystallization in Ni-Fe-based Alloy 718, a series of uniaxial compression tests was conducted in the temperature range 927°C - 1066°C and the strain rate range 5 x 10-4s-1- 5 s-1with varying initial grain size. The critical strains were graphically determined based on one parameter approach and microscopically confirmed. The effect of γ'' (matrix-hardening phase) and δ (grain boundary phase)on the critical strain was simply discussed. The constitutive model for the critical strain of Alloy 718 was constructed using the experimental data obtained from the higher strain rate and the temperature range between 940°C and 1040°C.


Author(s):  
Munir Al-Saadi ◽  
Christopher Hulme-Smith ◽  
Fredrik Sandberg ◽  
Pär G. Jönsson

AbstractAlloy 825 is a nickel-based alloy that is commonly used in applications where both high strength and corrosion resistance are required, such as tanks in the chemical, food and petrochemical industries and oil and gas pipelines. Components made from Alloy 825 are often manufactured using hot deformation. However, there is no systematic study to optimise the processing conditions reported in literature. In this study, a processing map for as-cast Alloy 825 is established to maximise the power dissipation efficiency of hot deformation in the temperature range of 950 to 1250 °C at an interval of 50 °C and strain rate range of $$0.01\, {\text{s}}^{ - 1}$$ 0.01 s - 1 to $$10.0\, {\text{s}}^{ - 1}$$ 10.0 s - 1 to a true strain of $$0.7$$ 0.7 using a Gleeble-3500 thermomechanical simulator. The processing conditions are also correlated to the Vickers hardness of the final material, which is also characterised using optical microscopy and scanning electron microscopy, including electron backscattered diffraction. The true stress-true strain curves exhibit peak stresses followed by softening due to occurrence of dynamic recrystallization. The activation energy for plastic flow in the temperature range tested is approximately $$450\,{\text{ kJ mol}}^{ - 1}$$ 450 kJ mol - 1 , and the value of the stress exponent in the (hyperbolic sine-based) constitutive equation, $$n = 5.0$$ n = 5.0 , suggests that the rate-limiting mechanism of deformation is dislocation climb. Increasing deformation temperature led to a lower Vickers hardness in the deformed material, due to increased dynamic recrystallization. Raising the strain rate led to an increase in Vickers hardness in the deformed material due to increased work hardening. The maximum power dissipation efficiency is over $$35\%$$ 35 % , obtained for deformation in the temperature range 1100-1250 °C and a strain rate of $$0.01\, {\text{s}}^{ - 1}$$ 0.01 s - 1 -$$0.1\, {\text{s}}^{ - 1}$$ 0.1 s - 1 . These are the optimum conditions for hot working.


Author(s):  
Amir Hosein Sheikhali ◽  
Maryam Morakkabati

Abstract In this study, hot deformation behavior of SP-700 titanium alloy was investigated by hot compression tests in the temperature range of 700-9508C and at strain rates of 0.001, 0.1, and 1 s-1. Final mechanical properties of the alloy (hot compressed at different strain rates and temperatures) were investigated using a shear punch testing method at room temperature. The flow curves of the alloy indicated that the yield point phenomenon occurs in the temperature range of 800- 9508C and strain rates of 0.1 and 1 s-1. The microstructural analysis showed that dynamic globularization of the lamellar α phase starts at 7008C and completes at 8008C. The alpha phase was completely eliminated from b matrix due to deformation- induced transformation at 8508C. The microstructure of specimens compressed at 8508C and strain rates of 0.001 and 0.1 s-1showed the serration of beta grain boundaries, whereas partial dynamic recrystallization caused a necklace structure by increasing strain rate up to 1 s-1. The specimen deformed at 7008C and strain rate of 1 s-1was located in the instability region and localized shear bands formed due to the low thermal conductivity of the alloy. The processing map of the alloy exhibited a peak efficiency domain of 54% in the temperature range of 780-8108C and strain rates of 0.001- 0.008 s-1. The hot deformation activation energy of the alloy in the α/β region (305.5 kJ mol-1) was higher than that in the single-phase β region (165.2 kJ mol-1) due to the dynamic globularization of the lamellar a phase.


2014 ◽  
Vol 788 ◽  
pp. 93-97 ◽  
Author(s):  
Chun Yan Wang ◽  
Hai Qun Qi ◽  
Kun Wu ◽  
Ming Yi Zheng

The high temperature compressive tests of squeeze casting ZK60 magnesium alloy in the testing temperature range of 523-723K and strain rate range of 0.001-10s-1 were performed on Gleeble-1500D thermal simulator testing machine. Optical microscopy was performed to elaborate on the dynamic recrystallization (DRX) grain growth. TEM observation indicated that the mechanical twinning, dislocation slip, and dynamic recrystallization are the materials typical deformation features. Variations of flow behavior with deformation temperature as well as strain rate were analyzed. Analysis of the flowing deformation behavior and microstructure observations indicated that the flow localization was observed at lower testing temperature and higher strain rates. Dynamic recrystallization occurred at higher testing temperature and moderate strain rates, which improved the ductility of the material. The results indicated that at the testing temperatures lower than 573K and strain rates higher than 1s-1, the material exhibited flow instability manifesting as bands of flow localizations. These temperatures and strain rates should be avoided in processing the material. Dynamic recrystallization occurs in the temperature range 573-723K and the strain rate range 0.001-0.1s-1. The number of dynamic recrystallization grains is less at lower temperature and higher strain rate than higher temperature and lower strain rate. The dynamic recrystallization is inadequate at 573-623K while the dynamic recrystallization grain growth has been observed in the temperature range of 673-723K. Therefore it may be considered that the optimum processing parameters for hot working of squeeze casting ZK60 magnesium alloy are 648K and 0.001-0.01s-1, at which fine dynamic recrystallization microstructure can be obtained.


Sign in / Sign up

Export Citation Format

Share Document