Hot Deformation and Processing Maps of 7005 Aluminum Alloy

2014 ◽  
Vol 33 (4) ◽  
pp. 369-375 ◽  
Author(s):  
Mingliang Wang ◽  
Peipeng Jin ◽  
Jinhui Wang

AbstractThe deformation behavior of 7005 alloy was studied by hot compression tests. The processing map was constructed by superimposing the instability map over the power dissipation map at a strain of 0.7 using the corrected flow stress data to eliminate the effect of friction. Microstructural examination was performed for validation. It can be found that the flow stresses increase with the decrease of deformation temperature or the increase of strain rate. At the relatively high strain rates, the material exhibits flow instability manifesting as adiabatic shear bands or flow localization. A large volume of coarse precipitations distributing in the grain boundaries in one of the peak efficiency domains: 275–325 °C/0.0005–0.001 s−1, which may result in inter-granular corrosion and spalling layer, should be avoided in the final deformed alloy. The optimum hot working domain is the temperature range of 400–450 °C and strain rate range of 0.0005–0.005 s−1, at which DRX is identified.

2014 ◽  
Vol 941-944 ◽  
pp. 48-53
Author(s):  
Wei Chen ◽  
Gang Chen ◽  
Jing Zhai ◽  
Li Ma

Compression tests of Mg-13Al-3Ca-3Zn-1Nd-0.2Mn Magnesium alloy as-extruded had been performed in the compression temperature range from 200°C to 400°C and the strain rate range from 0.001 s−1 to 10 s−1 and the flow stress data obtained from the tests were used to develop the power dissipation map, instability map and processing map. The most unsuitable zones in the power dissipation map including 200°C - 315°C and 0.01s-1- 0.1s-1 zone, 315°C - 400°C and 0.001s-1- 0.01s-1zone and 340°C - 360°C and 0.32 s-1- 0.56 s-1zone. The most unsuitable zones in the instability map are 310°C - 400°C, 0.001s-1to 0.56 s-1zone and 330°C - 400°C, 1s-1to 10 s-1zone. The most suitable temperature range is 330°C - 400°C and most optimal strain rate ranges are 1 s-1- 10 s-1and 0.001s-1- 0.56 s-1.


2013 ◽  
Vol 873 ◽  
pp. 3-9 ◽  
Author(s):  
Ming Liang Wang ◽  
Pei Peng Jin ◽  
Jin Hui Wang ◽  
Li Han

The compression tests of solution treatment ZL109 alloy have been performed in the compression temperature range from 250°C to 450°C and the strain rate range from 0.0005s-1to 0.5s-1. A processing map has been developed on the basis of flow stress data obtained as a function of temperature and strain rate, which revealed two domains of hot working for the alloy: one is situated at temperature between 270°C and 340°C with strain rate between 0.05s-1and 0.5s-1, the other is situated at the temperature between 380°C and 450°C with strain rate between 0.0005s-1and 0.004s-1. Combining with the processing map, the optimum parameters of hot working for ZL109 alloy are that 300°C/0.5s-1and 450°C/0.0005s-1, respectively. Microstructure observations indicated that DRX occurred in both these domains. The instable zones, i. e., adiabatic shear bands formation, wedge cracking, were also identified in the processing map and microstructural examination was performed for validation.


2013 ◽  
Vol 712-715 ◽  
pp. 58-64
Author(s):  
Jing Qi Zhang ◽  
Hong Shuang Di ◽  
Xiao Yu Wang

In the present study, deformation heating generated by plastic deformation and its effect on the processing maps of Ti-15-3 titanium alloy were investigated. For this purpose, hot compression tests were performed on a Gleeble-3800 thermo-mechanical simulator in the temperature range of 850-1150 °C and strain rate range of 0.001-10 s1. The temperature rise due to deformation heating was calculated and the as-measured flow curves were corrected for deformation heating. Using the as-measured and corrected flow stress data, the processing maps for Ti-15-3 titanium alloy at a strain of 0.5 were developed on the basis Murty‘s and Babu’s instability criteria. The results show that both the instability maps based the two instability criteria are essentially similar and are characterized by an unstable region occurring at strain rates higher than 0.1 s1for almost the entire temperature range tested. The unstable regions are overestimated from the as-measured data due to the effect of deformation heating, indicating a better workability after correcting the effect of deformation heating. This is further conformed by the analysis based on strain rate sensitivity.


Author(s):  
Mohd Abdul Wahed ◽  
Amit Kumar Gupta ◽  
Nitin Ramesh Kotkunde ◽  
Swadesh Kumar Singh

A processing map plays a major role in indicating safe and failure regions of a process conducted in a hot working regime. It also shows the response of a material, by indicating changes in the microstructural evolution through temperature. In the present study, a processing map has been developed depending on the flow stress data of Ti-6Al-4V alloy sheet in a strain rate range of 10−2 /s to 10−4 /s and over a temperature range of 700°C to 900°C in order to identify the presence of superplasticity region. The flow stress data have been acquired on the basis of temperature, strain and strain rate by conducting hot uniaxial tensile tests. Based on this, a power dissipation map is obtained to show the percentage of efficiency, as it is directly related to the amount of internal entropy produced. In addition, an instability map is also obtained, as it identifies the flow instability that are to be avoided during hot working process. Finally, a processing map has been established by overlaying instability map on efficiency map. The results clearly reveal that the superplastic deformation occurs within a temperature range of 750°C to 900°C at a strain rate of 10−4 /s, without any flow instability in this region.


2013 ◽  
Vol 395-396 ◽  
pp. 930-935 ◽  
Author(s):  
Fang Cheng Qin ◽  
Yong Tang Li ◽  
Hui Ping Qi ◽  
Shi Wen Du

In order to investigate the thermal forming behavior of as-cast 42CrMo steel, the isothermal compression tests were performed on a Gleeble-1500D thermal mechanical simulator in the deformation temperature ranging from 850 to 1150°C with an interval of 100°C, the strain rate ranging from 0.05 to 5s-1 and the height reduction of 60%. On the basis of the flow stress data, dynamic materials model (DMM) and Prasad's instability criterion, the processing maps for as-cast 42CrMo steel were constructed at the strains of 0.4 and 0.6. The safe and unsafe areas and the corresponding deformation regimes were predicted during hot working, which are verified through the microstructure observation. The results indicate that the safe zones in the temperature range of 850~1150°C and strain rate of 0.05~0.35s-1, which exhibit the dynamic recovery and recrystallization. However, the flow instability domains are in the domain of deformation temperatures 850~1150°C and strain rate higher than 0.35s-1. Typical microstructure of instability is cracking, which should be avoided so as to obtain desired mechanical properties in hot processing. Finally, the forging parameters were predicted and optimized accurately by the processing maps, the temperature range of 1050~1150°C and strain rate of 0.05~0.1s-1 were recommended as the optimum deformation conditions for hot processing of as-cast 42CrMo steel.


2012 ◽  
Vol 724 ◽  
pp. 178-181
Author(s):  
Woo Young Jung ◽  
Tae Kwon Ha

The hot deformation behavior of a high strength low alloy (HSLA) steel for construction application under hot working conditions in the temperature range of 900 to 1100 and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumars model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.3 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050. Plastic instability was expected in the regime of temperatures lower than 1000°C and strain rate lower than 0.3 s-1.


2017 ◽  
Vol 62 (1) ◽  
pp. 59-65
Author(s):  
A. Łukaszek-Sołek ◽  
A. Świątoniowski ◽  
K. Celadyn ◽  
J. Sińczak

Abstract In this paper, the results of investigations into, and of the analyses of, the hot deformation behaviour of the Ni50Cr45N0.6 alloy were presented. Compression tests were conducted on a Gleeble 3800 thermo-mechanical simulator within the following temperatures range 850-1200°C and within that of the strain rate 1-40 s-1 to the constant true strain of 0.9, for the purpose of fulfilling the objective of obtaining experimental stress date. Those data were taken advantage of for the purpose of calculating the workability parameters, and that means the efficiency of power dissipation η, the flow instability ξ and the strain rate sensitivity m. The processing maps based upon Murty’s criterion were drawn up for the following true strain range: 0.2-0.9, and, subsequently, both processing windows and the flow instability areas were determined. For the alloy being analysed, the most advantageous conditions of metal forming were ascertained within the following range of temperatures: 950-1000°C, and for that of the strain rate amounting to 10-40 s-1, and that because of (occurring at the temperature of 950°C) the peak of the efficiency of power dissipation parameter η, amounting to 22% (in accordance with Murty’s criterion). The flow instability areas identified on the processing maps ought to be avoided in metal forming processes. Experimental rolling tests were also conducted.


2012 ◽  
Vol 490-495 ◽  
pp. 3423-3426 ◽  
Author(s):  
Xin Zhao ◽  
Hong Zhao ◽  
Rui Zhang

The hot deformation characteristics of TC18 titanium alloy were studied in the temperature range 750-850°C and strain rate range 0.001-1 s-1 by using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results reveal that the flow stress of TC18 is sensitive to strain rate. Processing map at stain of 0.6 reveals two domains: one is centered at 750°C and 0.001s-1; another is centered at 850°C and 0.001s-1. The maximum efficiency is more than 60%. According to the maps, the zone with the temperature range of 750-850°C and strain rate range of 0.01-0.001s-1 may be suitable for hot working


2012 ◽  
Vol 616-618 ◽  
pp. 1721-1724
Author(s):  
Ya Juan Sun

The mechanical property of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass was investigated at different strain-rate range. It is indicated that the yield strength of the Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass is insensitive to quasi-static strain rates ranging from 4×10-4 s-1 to 4×10-3 s-1. However, plasticity remarkably decreases with increasing strain rate under compression tests. The more shear bands were observed on the side surface of the fractured samples by SEM at low strain rate, which is contributed to the improved ductility.


2014 ◽  
Vol 915-916 ◽  
pp. 588-592
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma

Compression tests of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn Magnesium alloy as-extruded had been performed in the compression temperature range from 200°C to 350°C and the strain rate range from 0.001 s1to 1 s1and the flow stress data obtained from the tests were used to develop the power dissipation map, instability map and processing map. The optimum parameters for hot working of the alloy had been determined. According to the processing maps, the most optimal temperature range is 280°C to 350°C and most optimal strain rate range is 0.001 S-1to 1 S-1.


Sign in / Sign up

Export Citation Format

Share Document