Stress Distribution Around Maxillary Anterior Implants as a Factor of Labial Bone Thickness and Occlusal Load Angles: A 3-Dimensional Finite Element Analysis

2014 ◽  
Vol 40 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Marzieh Alikhasi ◽  
Hakimeh Siadat ◽  
Allahyar Geramy ◽  
Ahmad Hassan-Ahangari

The purpose of this study was to evaluate the influence of the stress/strain distribution in buccal bone of an anterior maxillary implant using 3 bone thicknesses under 5 different loading angles. Different testing conditions incorporating 3 buccal bone thicknesses, 3 bone compositions, and 5 loading angles of an anterior maxillary implant were applied in order to investigate the resultant stress/strain distribution with finite element analysis. The maximum equivalent stress/strain increased with the decreasing of loading angle relative to the long axis. In addition to loading angle, bone quality and quantity also influenced resultant stress distribution. Dental practitioners should consider combinations of bone composition, diameter, and load angulations to predict success or failure for a given implant length and diameter.

2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2012 ◽  
Vol 472-475 ◽  
pp. 688-691
Author(s):  
Xin Mei Yuan ◽  
Si Zhu Zhou ◽  
Tian Cheng Huang

In order to improve the work life and reliability of turbodrill diversion liner, the parametric finite element model for turbodrill diversion liner is established by using finite element analysis software, and the result of finite element analysis is shown that the maximum equivalent stress is bigger and the work safety coefficient is low. On the basis of the result of finite element analysis and the characteristics of diversion liner, the improvement scheme is put forward and the finite element analysis is carried out. The analysis result shows that the fillet radius of diversion hole drilling fluid inlet has an importance impact on the maximum equivalent stress. When the fillet radius is 9 millimeter, the maximum equivalent stress is least, the maximum equivalent stress is reduced by 34.82% compared with the original structure, and the safety coefficient reached 1.772, and the results meet the design requirement.


2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shuyan Wang ◽  
Dongxiang Guo ◽  
Shiteng Mao

The deformation of the flexspline and the meshing quality are largely determined by the profile of a wave generator. The wave generator with a combined profile can effectively reduce or improve the deformation stress and strain of the flexspline for improving the transmission efficiency and reducing wear or noise. In this paper, in view of the facts that conic is originally cut out of the cone and different conic curves are easy to transform, a design concept of the curve cam wave generator based on the conic curve is proposed. Firstly, the combined principle, constraint conditions, and mathematic model of the curve cam generator based on the conic curve are established. Secondly, the deformation theory of the flexspline acted by the curve cam wave generator with conic curves has been developed, and finite element analysis on stress and strain of the flexspline compared with a standard elliptic wave generator has been carried out. Finally, a cam wave generator combined with the circle and ellipse as a sample has been developed and manufactured. Circumferential strain test has been further carried out by a static strain gauge to verify the strain characteristics of the flexspline acted with the circle and ellipse combined cam wave generator. The FEM results show that, in the meshing area of the flexspline, the maximum equivalent stress of the flexspline under the action of the arc and the ellipse wave generator is about 93 MPa, which is 36.3% lower than the maximum equivalent stress of the flexspline under the action of the standard ellipse which is 143 MPa. The experimental results show that the fitting curve of the experimental results fits well with the finite element analysis curve.


2021 ◽  
Vol 335 ◽  
pp. 03001
Author(s):  
Yoon Zuan Ang ◽  
Pei Xuan Ku

Crankshaft is one of the crucial parts for the internal combustion engine which required effective and precise working. In this study, the aim of the study is to identify the stress state in the crankshaft and to explain the failure in automotive crankshaft and fatigue life of crankshaft by using finite element analysis. The 3D solid modelling of the crankshaft model was designed and developed using SolidWorks. A static structural and dynamic analysis on an L-twin cylinder crankshaft were used to determine the maximum equivalent stress and total deformation at critical locations of the crankshaft. The model was tested under dynamic loading conditions to determine fatigue life, safety factor, equivalent alternating stress and damage using the fatigue tool. The results obtained from this study indicated that the crankshaft has obvious fatigue crack which was belongs to fatigue fracture. The fatigue fracture developed was only attributed to the propagating and initiate cracks on the edges of the lubrication hole under cyclic bending and torsion. Overall, the crankshaft is safe for both static and fatigue loadings. In dynamic analysis, the critical frequency obtained in the frequency response curve should be avoided which it may cause failure of the crankshaft.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Tehmina Ayub ◽  
Sadaqat Ullah Khan ◽  
Nasir Shafiq

A flexural capacity model for fibre-reinforced concrete (FRC) beams reinforced with PVA and basalt fibres is suggested for the rectangular beam sections. The proposed models are based on the concept of equivalent stress block parameters for both compressive and tensile stresses, similar to Eurocode and ACI code. The parameters are defined by allowing the conversion of the stress-strain models into equivalent rectangular stress blocks, similar to Eurocode 2. The flexural model is suggested to determine the loading capacity of 21 FRC beams containing up to 3% volume fraction of PVA and basalt fibres without reinforcing bars. In order to investigate the accuracy of the proposed flexure models, finite element analysis (FEA) of the same beams was carried out using the compressive and tensile stress-strain curves. Furthermore, 21 FRC beams subjected to three-point bending were tested. The results of the flexural models showed good agreement with the load-carrying capacity of the tested FRC beams, and the results of FEA of all beams showed a good correlation with the experimental results in terms of the maximum load, load versus midspan deflection patterns, and the maximum tensile strains.


Sign in / Sign up

Export Citation Format

Share Document