Synthesis of Dimethyl Carbonate over Activated Carbon Supported Cu Based Catalysts

2014 ◽  
Vol 953-954 ◽  
pp. 1242-1245
Author(s):  
Wang Ruiyu ◽  
Li Zhong

The supported chloride-free copper based catalyst was prepared by deposition-precipitation method and used to catalyze the direct vapor-phase oxycarbonylation of methanol to dimethyl carbonate (DMC). The effect of reductive agent and copper salt precursor on catalyst structure and catalytic performance were investigated, the catalysts were characterized by XRD, H2-TPR techniques. Using Cu (CH3COO)2 as precursor, glucose as reductive agent, when loading amount was 17.1%, the Cu2O/AC catalyst shows the best performance for DMC synthesis. Under the condition of CO/MeOH/O2=5/11/1, SV=6625h-1, the average STY of DMC in 9 hrs running was 71.96mg/(g·h), and selectivity of DMC was 83.13%.

2021 ◽  
Vol 13 (1) ◽  
pp. 115-122
Author(s):  
Meng Zhang

The present research on dimethyl carbonate (DMC) synthesis from CO2 was short of effective theoretical guidance and catalyst design was also blind. A kind of regular relationship was found from catalyst structure calculation and activity experiments. Therefore, a novel energy band matching method was proposed. After substantial verification experiments, it was proved to be correct. Whether one certain catalyst has catalytic activity can be judged predictably according to this novel method. Novel and efficient catalysts can be designed or selected on the basis of designer's wishes. Based on this method, three efficient catalysts were prepared and CuO–Co3O4@SiO2 catalyst had the best catalytic performance. In a word, once it is applied in catalysts research, there will be a huge progress in catalysis and materials science fields.


2015 ◽  
Vol 15 (10) ◽  
pp. 8330-8335 ◽  
Author(s):  
Jin Oh Jun ◽  
Joongwon Lee ◽  
Ki Hyuk Kang ◽  
In Kyu Song

A series of CeO2(X)–MgO(1−X) (X = 0, 0.25, 0.5, 0.75, and 1.0) nano-catalysts were prepared by a co-precipitation method for use in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Among the CeO2(X)–MgO(1−X) catalysts, CeO2(0.25)–MgO(0.75) nano-catalyst showed the best catalytic performance. Alkali and alkaline earth metal oxides (MO = Li2O, K2O, Cs2O, SrO, and BaO) were then supported on CeO2(0.25)–MgO(0.75) by an incipient wetness impregnation method with an aim of improving the catalytic performance of CeO2(0.25)–MgO(0.75). Basicity of the catalysts was determined by CO2-TPD experiments in order to elucidate the effect of basicity on the catalytic performance. The correlation between catalytic performance and basicity showed that basicity played an important role in the reaction. Yield for dimethyl carbonate increased with increasing basicity of the catalysts. Among the catalysts tested, Li2O/CeO2(0.25)–MgO(0.75) nano-catalyst with the largest basicity showed the best catalytic performance in the synthesis of dimethyl carbonate.


2021 ◽  
Author(s):  
Yukui Fu ◽  
Cui Lai ◽  
Wenjing Chen ◽  
Huan Yi ◽  
Xigui Liu ◽  
...  

Abstract Gold (Au) nanoparticles supported on certain platforms display highly efficient activity on nitroaromatics reduction. In this study, steam-activated carbon black (SCB) was used as a platform to fabricate Au/SCB catalysts via a green and simple method for 4-nitrophenol (4-NP) reduction. The obtained Au/SCB catalysts exhibit efficient catalytic performance in reduction of 4-NP (rate constant kapp = 2.1925 min-1). The effects of SCB activated under different steam temperature, Au loading amount, pH and reaction temperature were studied. The structural advantages of SCB as a platform were analyzed by various characterizations. Especially, the result of N2 adsorption-desorption method showed that steam activating process could bring higher surface area (from 185.9689 m²/g to 249.0053 m²/g), larger pore volume (from 0.073268 cm³/g to 0.165246 cm³/g) and more micropore for SCB when compared with initial CB, demonstrating the suitable of SCB for Au NPs anchoring, thus promoting the catalytic activity. This work contributes to the fabrication of other supported metal nanoparticle catalysts for preparing different functional nanocomposites for different applications.


2014 ◽  
Vol 934 ◽  
pp. 60-64 ◽  
Author(s):  
Ling Niao Kong ◽  
Ya Ru Huang ◽  
Yin Jun Fang

Carbon nanotube (CNT) and activated carbon (AC)-supported Pd catalysts have been prepared by impregnation and reduction-precipitation method using chloropalladate acid as metal precursor. The catalytic performance for phenol in-situ hydrogenation was evaluated under 493 K, 3.5MPa. The results show that Pd/CNTs catalyst has higher selective for phenol in-situ hydrogenation to cyclohexanone. The catalysts have been characterised by CO-TPD and TEM. The mesoporosity structure and inner hollow cavities of Pd/CNTs catalyst are responsible for the distinguished properties.


2020 ◽  
Vol 14 (1) ◽  
pp. 32-37
Author(s):  
Melody Kimi ◽  
◽  
Bibie Nur Syafiqah Safiuddin ◽  
Suh Cem Pang ◽  
◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Quanrun Liu ◽  
Haipeng Li ◽  
Xiaoke Fang ◽  
Jingjie Zhang ◽  
Chuanxiang Zhang ◽  
...  

A modified red mud- (MRM-) supported Fe catalyst (xFe/MRM) was prepared using the homogeneous precipitation method and applied to methane decomposition to produce hydrogen. The TEM and SEM-EDX results suggested that the particle sizes of the xFe/MRM catalysts were much smaller than that of raw red mud (RM), and the active metal Fe was evenly distributed over the catalyst structure. Moreover, BET results indicated that the surface areas and pore volumes of the catalysts were significantly improved, and the pore sizes of xFe/MRM were distributed from 5 to 12 nm, which is typical for a mesoporous material. The activities of those catalysts for the catalytic decomposition of methane were studied at atmospheric pressure at a moderate temperature of 650°C; the results showed that the xFe/MRM catalysts were more active than RM and MRM. The methane conversion curves of xFe/MRM catalysts exhibited similar variation tendencies (three-step) during the reaction despite different Fe contents, and the loading amount of Fe clearly affected the activity of the catalysts.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


Sign in / Sign up

Export Citation Format

Share Document