Synthesis of Novel Phosphite Ligands and their Application in Environmental Friendly Catalysis

2014 ◽  
Vol 955-959 ◽  
pp. 647-650
Author(s):  
Yu Liang Zhao ◽  
Lan Xiang Hou ◽  
Li Zhou ◽  
Wen Zhi Zhang

In this paper, propylene oxide has been first used to modify octylpolyglycol phenylene phosphite (OPGPP). A novel thermoregulated ligand OPGPP-Rh was synthesized for enlarging the application range of thermoregulated phase separable catalysis (TPSC) proposed by us. The ligands being studied have distinct critical solution temperature (CST) in some organic solvents. The CST of OPGPP (EO+PO=26+6) is 70°C in heptane. The authors further investigated the catalytic activity, separation and recycling efficiency of rhodium complex for hydroformylation of 1-octene in the catalytic system with CST. The optimal reaction conditions were as follows: T=100 °C, p=6.0MPa, CO:H2=1:1, reaction time of 5 hours, n (substrate to Rh)=1000, the solvent of heptane. Under the above conditions, the conversion of 1-octene and yield reached 90% and 88%, respectively. The catalyst could be recycled for five times without obvious loss in catalytic activity.

2011 ◽  
Vol 17 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Jiancheng Zhou ◽  
Wu Dongfang ◽  
Birong Zhang ◽  
Yali Guo

A series of single-metal carbonates and Pb-Zn mixed-metal carbonates were prepared as catalysts for alcoholysis of urea with 1,2-propylene glycol (PG) for the synthesis of propylene carbonate (PC). The mixed carbonates all show much better catalytic activities than the single carbonates, arising from a strong synergistic effect between the two crystalline phases, hydrozincite and lead carbonate. The mixed carbonate with Pb/Zn=1:2 gives the highest yield of PC, followed by the mixed carbonate with Pb/Zn=1:3. Furthermore, Taguchi method was used to optimize the synthetic process for improving the yield of PC. It is shown that the reaction temperature is the most significant factor affecting the yield of PC, followed by the reaction time, and that the optimal reaction conditions are the reaction time at 5 hours, the reaction temperature at 180 oC and the catalyst amount at 1.8 wt%, resulting in the highest PC yield of 96.3%.


2017 ◽  
Vol 41 (2) ◽  
pp. 88-92
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Wenyi Su ◽  
Guobi Li ◽  
Chunlin Ni

2,6-Bis[1-(pyridin-2-yl)-1H-benzo[d]-imidazol-2-yl]pyridine (bpbp), which has been synthesised by intramolecular thermocyclisation of N2,N6-bis[2-(pyridin-2-ylamino)phenyl]pyridine-2,6-dicarboxamide, reacts with sodium pyridine-2,6-dicarboxylate (pydic) and RuCl3 to give [Ru(bpbp)(pydic)] which can catalyse the oxidation of (1H-benzo[d]imidazol-2-yl)methanol to 1H-benzo[d]imidazole-2-carbaldehyde by H2O2. The optimal reaction conditions were: molar ratios of catalyst to substrate to H2O2 set at 1: 1000: 3000; reaction temperature 50 °C; reaction time 5 h. The yield of (1H-benzo[d]imidazol-2-yl) methanol was 70%.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2012 ◽  
Vol 468-471 ◽  
pp. 1371-1374
Author(s):  
Ke Nian Wei ◽  
Bin Zhou ◽  
Jiang Quan Ma ◽  
Yan Wang

HPW/C catalysts were prepared using impregnation method. The physical chemistry properties of the catalysts were characterized employing XRD and NH3-TPD.The effects of HPW loading, catalyst amount and reaction time on the catalyst performances were investigated. The results more acid content and active center contribute to the reaction performance. Under the optimal reaction conditions of 0.8g 29%(w) HPW/C as the catalyst, n(adipic acid): n(ethanol):n(toluene)=1:6:1,5h,the etherification rate was 97.3%.


1981 ◽  
Vol 27 (1) ◽  
pp. 144-146 ◽  
Author(s):  
W S Robertson

Abstract Some modifications of the conditions of the reaction between plasma and bromcresol green have led to an improved method for determination of plasma albumin with the Vickers M300 multichannel analyzer. Dye concentration and reaction time are the factors principally influencing method specificity, but variable protein composition of human plasma also affects it, so that optimal reaction conditions vary from specimen to specimen. Thus a compromise must be reached such that the best conditions for determining plasma albumin over a range of different protein concentrations are achieved. In the proposed method for the Vickers M300 a reaction time of 12 s (the minimum possible) is used. Comparison with "rocket" immunoelectrophoresis gave the following linear regression: y = 10 + 0.79 x (n = 91; r = 0.96).


2013 ◽  
Vol 483 ◽  
pp. 38-41
Author(s):  
Shu Heng Liu

Take Waugh-Type (NH4)6[MnMo9O32] •8H2O absorbed on diatomite and prepared supported solid catalyst. The properties of the catalyst were studied through the synthesis of benzyl acetate. The appropriate reaction conditions were obtained by orthogonal test: mole ratio of acetic acid to benzyl alcohol was 2.5:1.0, the catalyst dosage was 1.6g, the water carrying agent toluene dosage was 2.5ml, reaction time was 150min, esterification yield was 87.4%. The catalyst are high catalytic activity and non- polluting, and could be reused.


2019 ◽  
Vol 43 (9-10) ◽  
pp. 419-425 ◽  
Author(s):  
Huanhuan Dong ◽  
Shichao Xu ◽  
Jing Wang ◽  
Yuxiang Chen ◽  
Liangwu Bi ◽  
...  

Selective aerobic oxidation of α-pinene to high-value products is a major challenge in chemistry. Metalloporphyrins are proved to be selective catalysts for aerobic oxidation of simple hydrocarbons. Herein, we extend this method to more complex substrates using metallodeuteroporphyrins as model catalysts. It was found that the oxidation occurs mainly on the C=C and allylic C–H bonds of α-pinene influenced by the reaction temperature, reaction time, catalyst concentration, and oxygen flow rate. Allylic C–H oxidation products are obtained with a maximum selectivity value of 78.4% using the following reaction conditions: 105°C, 7 h, 5 ppm, and 60 mL/min. The influence of the metal nuclei of the metallodeuteroporphyrins on this reaction is also investigated. It was found that metallodeuteroporphyrins with Fe3+ as the metal nucleus exhibit the highest catalytic activity.


2013 ◽  
Vol 781-784 ◽  
pp. 276-279
Author(s):  
Yu Hang Zhao ◽  
Li Cui ◽  
Da Zhi Wang ◽  
Tong Kuan Xu ◽  
Yong Peng Li

Butanone 1,2-propanediol ketal was synthesized by butanone and 1,2-propanediol as raw materials and sulfamic acid as catalyst. The effects of the mole ratio of raw materials agent, the dosage of the water-carrying agent and catalyst, reaction time on the product yield were discussed separately. Experimental results showed that sulfamic acid was a suitable catalyst for synthesizing of butanone 1,2-propanediol ketal. And the optimal reaction conditions are as follows: the mole ratio of butanone to 1,2-propanediol is 1:1.5, the amount of the catalyst is 2.2%, the water-carrying agent is 25ml, the reaction temperature is 358-378K and reaction time 3h. In this condition, the yield of production could reach 93.8%.


2013 ◽  
Vol 821-822 ◽  
pp. 1081-1084 ◽  
Author(s):  
Xian Ye Qin ◽  
Biao Liu ◽  
Bing Han ◽  
Wen Bo Zhao ◽  
Shui Sheng Wu ◽  
...  

The catalytic activity of many Lewis and Bronsted acid for the synthesis of diethyl carbonate (DEC) from ethyl carbamate (EC) and ethanol was evaluated in a bath reactor. Pyrophosphoric acid (H4P7O2) which showed the best activity was selected to further investigate the effect of reaction conditions, such as reaction temperature, catalyst dose and reaction time, on the yield of DEC. Under the optimal conditions, DEC yield can reach 29.1%.


Author(s):  
Hodhaifa Derdar ◽  
Mohammed Belbachir ◽  
Amine Harrane

A new green polymerization technique to synthesis polylimonene (PLM) is carried out in this work. This technique consists of using Maghnite-H+ as eco-catalyst to replace Friedel-Crafts catalysts which are toxics. Maghnite-H+ is a montmorillonite silicate sheet clay which is prepared through a simple exchange process. Polymerization experiments are performed in bulk and in solution using CH2Cl2 as solvent. Effect of reaction time, temperature and amount of catalyst is studied, in order to find the optimal reaction conditions. The polymerization in solution leads to the best yield (48.5%) at -5°C for a reaction time of 6 h but the bulk polymerization, that is performed at 25°C, remains preferred even if the yield is lower (40.3%) in order to respect the principles of a green chemistry which recommend syntheses under mild conditions, without solvents and at room temperature. The structure of the obtained polymer (PLM) is confirmed by FT-IR and Nuclear Magnetic Resonance of proton (1H-NMR). The glass transition temperature (Tg) of the polylimonene is defined using Differential Scanning Calorimetry (DSC) and is between 113°C and 116°C. The molecular weight of the obtained polymer is determined by Gel Permeation Chromatography (GPC) analysis and is about 1360 g/mol. Copyright © 2019 BCREC Group. All rights reservedReceived: 26th May 2018; Revised: 11st September 2018; Accepted: 22nd September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Derdar, H., Belbachir, M., Harrane, A. (2019). A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 69-78 (doi:10.9767/bcrec.14.1.2692.69-78)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2692.69-78 


Sign in / Sign up

Export Citation Format

Share Document