Finite Element Static and Dynamic Analysis for a Piston

2010 ◽  
Vol 97-101 ◽  
pp. 3323-3326 ◽  
Author(s):  
Yan Xia Wang ◽  
Yong Qi Liu ◽  
H.Y. Shi

Piston is one of the most stressed components of an engine. In this paper, a 1/2 3-D solid model of a new designed piston was built by using ANSYS software. The stable stress distribution and the deformation under the thermo-mechanical coupling condition were firstly calculated. Calculating results indicates that the maximum stress concentration is at the upper end of piston pin boss inner hole, and is mainly caused by the peak pressure of the fuel gas. Then the finite element dynamic analysis was conducted based on the mechanical fatigue testing method, and the mechanical fatigue life-span was calculated. All these work indicate that the design of the piton is reasonable.

2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


Author(s):  
P. Thibaux ◽  
J. Van Wittenberghe ◽  
E. Van Pottelberg ◽  
M. Van Poucke ◽  
P. De Baets ◽  
...  

Tubular joints are intensively used in off-shore structures for shallow waters. Depending on the sea conditions and the type of structure, the design can be fatigue driven. This is particularly the case for off-shore wind turbines, where turbulences are generating a fatigue loading. Any improvement of the fatigue performance of the tubular joint would be beneficial to reduce the weight and the cost of the structure. To assess efficiently the fatigue resistance of the tubular joint, a testing method has been developed based on the resonance principle. The complete circumference of the welded joint can be loaded, successively in the in-plane and out-of-plane modes at a frequency close to 20Hz. Finite element computations were used to investigate the feasibility of the concept. Then, an X-node was made and successfully tested to investigate the stress distribution along the weld. The experimental results were compared with finite element computations, giving a good agreement.


2014 ◽  
Vol 529 ◽  
pp. 410-414
Author(s):  
Cang Zhao ◽  
Guang Li Song ◽  
Lei Xu

By combining the industrial design software UG and finite element dynamic analysis software ANSYS/LS-DYNA, the paper respectively designs the non-linear knitting cams with polynomial curves, and simulates the loop-forming process in the interaction between the cams and needles. Based on comparative analyses, it’s thereby concluded that the polynomial curve has the best performance and is significantly superior to the cam curve composed of straight-lines and circular-arcs; the elements with higher stresses are located above the butt of needle jack and the joint of the jack and latch needle; and the polynomial curve is effective in lowering the maximum stress of the needle.


Sign in / Sign up

Export Citation Format

Share Document