A Measuring Method of Liquid Food Conductivity Based on Pulse Response Measurement Method

2014 ◽  
Vol 981 ◽  
pp. 628-631
Author(s):  
Xin Lao Wei ◽  
Yu Long LI

The food conductivity is one of impact factors on pulsed electric field sterilization. Abnormal breakdown of high conductivity liquid is also one of the bottlenecks in pulsed electric field sterilization technology. The conductivity of liquid food should be accurate calculated for searching the mechanism of abnormal breakdown deeply. An accurate measuring method of conductivity of liquid food is proposed based on pulse response method. Conductivity can be calculated by data recorded from oscilloscope with electrical pulse treating on the conductance cell. This method can decrease the impact of stray capacitance and polarization phenomenon on measured results.

Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 505 ◽  
Author(s):  
Gabriel Oliveira ◽  
Urszula Tylewicz ◽  
Marco Dalla Rosa ◽  
Thomas Andlid ◽  
Marie Alminger

Berry fruits, such as strawberries and blueberries, are rich sources of anthocyanins. Several studies have been made on the impact of non-thermal treatments on safety, shelf-life and nutritional characteristics of such products, but the effects of these processes on anthocyanin stability during digestion in the gastrointestinal tract are still not completely clear. The aim of this study was to assess the recovery of anthocyanins after simulated gastrointestinal digestion of (1) strawberry samples, pre-treated with pulsed electric field (PEF) at 100 or 200 V·cm−1, prior to osmotic dehydration (OD), and (2) blueberry samples coated with chitosan and procyanidin. After digestion, a significantly higher content of cyanidin-3-O-glucoside and malvidin-3-O-glucoside was quantified by LC-MS/MS in processed strawberry and blueberry samples, compared with the controls. The highest recovery of cyanidin-3-O-glucoside was detected in digested strawberry samples osmotically dehydrated with trehalose. The recovery of malvidin-3-O-glucoside was highest in digested blueberries coated with chitosan and stored for 14 days, compared with untreated samples or samples coated with chitosan and procyanidin. Our study shows the potential of mild PEF treatments combined with OD, or the use of edible coating, to obtain shelf-stable products without substantially affecting the composition or the stability of anthocyanins during digestion in the upper gastrointestinal tract.


2014 ◽  
Vol 554 ◽  
pp. 588-592 ◽  
Author(s):  
Ali Mohammad Dastgheib ◽  
Zolkafle Buntat ◽  
Muhammad Abu Bakar Sidik

The application of high voltage electric field for preservation of fruit juices has a promising scope in the food industry. The pulsed electric field (PEF) is an innovative non- thermal technique and free from bio-toxic effects. The technique has a viable solution of the problem yet faced in the food industry to prolong life and preserve and maintain quality with natural properties of the liquid food and beverages. In this study, we have treated the pineapples juice samples by different strengths of pulsed electric field such as 10, 20 and 30kV/cm for 5 minutes in each test. This study used new design of helix treatment chamber with three different lengths of 20, 30and 50cm. In these experiments, all samples were kept in same and normal condition with a temperature around 25-26 andthe humidity was between 55 and 65%. Then the observation based on chemical tests such as pH, conductivity, salinity and total dissolved solids (TDS) was recorded for all samples before and after the test. Based on results obtained by chemical parameters suggest that the injection on pulsed electric field of 30 kV/cm by the 50 cm treatment chamber has the best effect on pineapple juices characteristic as compared to the other value. The result of this experiment is encouraging and supportive of the better way for pasteurization the pineapple juices and increasing longevity of pineapple juices.


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 244 ◽  
Author(s):  
Malgorzata Nowacka ◽  
Silvia Tappi ◽  
Artur Wiktor ◽  
Katarzyna Rybak ◽  
Agnieszka Miszczykowska ◽  
...  

Beetroot is a root vegetable rich in different bioactive components, such as vitamins, minerals, phenolics, carotenoids, nitrate, ascorbic acids, and betalains, that can have a positive effect on human health. The aim of this work was to study the influence of the pulsed electric field (PEF) at different electric field strengths (4.38 and 6.25 kV/cm), pulse number 10–30, and energy input 0–12.5 kJ/kg as a pretreatment method on the extraction of betalains from beetroot. The obtained results showed that the application of PEF pre-treatment significantly (p < 0.05) influenced the efficiency of extraction of bioactive compounds from beetroot. The highest increase in the content of betalain compounds in the red beet’s extract (betanin by 329%, vulgaxanthin by 244%, compared to the control sample), was noted for 20 pulses of electric field at 4.38 kV/cm of strength. Treatment of the plant material with a PEF also resulted in an increase in the electrical conductivity compared to the non-treated sample due to the increase in cell membrane permeability, which was associated with leakage of substances able to conduct electricity, including mineral salts, into the intercellular space.


Sign in / Sign up

Export Citation Format

Share Document