Measurement Studies on Superhydrophobic Materials

2014 ◽  
Vol 988 ◽  
pp. 134-142
Author(s):  
Sheila Devasahayam ◽  
Prasad Yarlagadda

Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.Keywords: Wettability, contact angle, contact angle hysteresis, contact time, surface roughness, drag reduction measurements, morphology, surface friction, Reynolds number

1981 ◽  
Vol 59 (13) ◽  
pp. 1954-1961 ◽  
Author(s):  
Erdal Bayramli ◽  
Theodore G. M. van de Ven ◽  
Stanley G. Mason

The effect of roughness on the wettability of an axisymmetric cylinder is investigated theoretically by making use of equilibrium meniscus shapes on solid surfaces analogously to previous studies for drops on horizontal surfaces. Employing circumferential sinusoidal and saw-toothed grooved structure, and using mechanistic arguments, one can explain wetting hysteresis, the formation of composite surfaces, and the presence of non-equilibrium jumps during contact line motion.On unidirectionally random surfaces the maximum surface slopes mainly determine the value of the advancing, and the minimum slopes of the receding contact angle. These effects of surface slopes diminish with decreasing roughness size. Diminishing roughness size also gives rise to numerous small non-equilibrium jumps imposed upon larger jumps during wetting. The contact angle hysteresis is found to show a nearly linear relationship with the spread in the distribution of solid surface slopes.


Author(s):  
Elias Aljallis ◽  
Mohammad Amin Sarshar ◽  
Raju Datla ◽  
Scott Hunter ◽  
John Simpson ◽  
...  

In this paper, we report the characterization of large-scale superhydrophobic surfaces for hydrodynamic drag reduction in boundary layer flows using a high-speed towing tank system. For making superhydrophobic surfaces, flat aluminum plates (4 ft × 2 ft × 3/8 in, with sharpened leading/trailing edges) were prepared and coated with nano-structured hydrophobic particles. The static and dynamic contact angle measurements indicate that the coated surfaces correspond to a de-wetting (Cassie) state with air retained on the nano-structured surfaces. Hydrodynamic drag of the large-area superhydrophobic plates was measured to cover turbulent flows (water flow speeds up to 30 ft/s, Reynolds number in the range of 105−107) and compared with that of an uncoated bare aluminum control plate. Results show that an acceptable drag reduction was obtained up to ∼30% in the early stage of the turbulent regime which is due to reduced shear forces on the plates because of the lubricating air layer on the surface. However, in a fully developed turbulent flow regime, an increase in drag was measured which is mainly attributed to the amplified surface roughness due to the protrusions of air bubbles formed on the surface. Meanwhile, a qualitative observation suggests that the air bubbles are prone to be depleted during several runs of the high shear-rate flows, as revealed by streak lines of depleted air bubbles. This suggests that the superhydrophobic coating is unstable in maintaining the de-wetted state under dynamic flow conditions and that the increased drag results from the inherent surface roughness of the coating layer where the de-wetted state collapses to a wetted (Wenzel) state due to the depletion of air bubbles. However, it was also observed that the air bubbles would reform on the surface, with the same properties as a dry surface immersed in water, while the plate was kept statically immersed in water for 12 hours, suggesting that the superhydrophobic coating retains static stability for a de-wetted state. The experimental results illustrate that drag reduction is not solely dependent on the superhydrophobicity of a surface (e.g., contact angle and air fraction), but the morphology and stability of the surface air layer are also critical for the design and use of superhydrophobic surfaces for large-scale hydrodynamic drag reduction, especially in turbulent flow regimes.


Langmuir ◽  
2011 ◽  
Vol 27 (11) ◽  
pp. 6890-6896 ◽  
Author(s):  
Siang-Jie Hong ◽  
Feng-Ming Chang ◽  
Tung-He Chou ◽  
Seong Heng Chan ◽  
Yu-Jane Sheng ◽  
...  

1991 ◽  
Vol 57 (544) ◽  
pp. 4124-4129 ◽  
Author(s):  
Kenji KATOH ◽  
Hideomi FUJITA ◽  
Masayoshi YAMAMOTO

Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


2015 ◽  
Vol 143 (13) ◽  
pp. 134705 ◽  
Author(s):  
F. Bottiglione ◽  
G. Carbone ◽  
B. N. J. Persson

2011 ◽  
Vol 2 ◽  
pp. 66-84 ◽  
Author(s):  
Bharat Bhushan

The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.


Sign in / Sign up

Export Citation Format

Share Document