Fabrication of Micro Three Dimensional Structures by Two Photon Polymerization with SiO/Resin

2016 ◽  
Vol 100 ◽  
pp. 93-99
Author(s):  
Maria Guadalupe del Rocio Herrera Salazar ◽  
Hiroyuki Akiyama ◽  
Tadachika Nakayama ◽  
Hisayuki Suematsu ◽  
Koichi Niihara

In this paper we presented the synthesis of TEOS with photoresist in order to use it like a hybrid material for 3D printer on the micrometer scale by means of the two-photon polymerization process, in which two photon are absorbed simultaneously by the material using an ultrafast laser causing its polymerization. We analyzed the mix of TEOS and photoresist with UV-VIS and FTIR spectrometers, checking that complies with two important conditions: has an optical transmission at 780 nm and absorbs at 390 nm. Finally we fabricated micro-structures with a new hybrid material; TEOS does not absorb the laser in this system and does not interfere with the formation of a three-dimensional structure. After formation the 3D microstructure, samples were heated to form the SiO. These samples of microstructures were observed under digital microscope and SEM.

2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Ketki M. Lichade ◽  
Yayue Pan

Abstract This study successfully integrates acoustic patterning with the Two-Photon Polymerization (TPP) process for printing nanoparticle–polymer composite microstructures with spatially varied nanoparticle compositions. Currently, the TPP process is gaining increasing attention within the engineering community for the direct manufacturing of complex three-dimensional (3D) microstructures. Yet the full potential of TPP manufactured microstructures is limited by the materials used. This study aims to create and demonstrate a novel acoustic field-assisted TPP (A-TPP) process, which can instantaneously pattern and assemble nanoparticles in a liquid droplet, and fabricate anisotropic nanoparticle–polymer composites with spatially controlled particle–polymer material compositions. It was found that the biggest challenge in integrating acoustic particle patterning with the TPP process is that nanoparticles move upon laser irradiation due to the photothermal effect, and hence, the acoustic assembly is distorted during the photopolymerization process. To cure acoustic assembly of nanoparticles in the resin through TPP with the desired nanoparticle patterns, the laser power needs to be carefully tuned so that it is adequate for curing while low enough to prevent the photothermal effect. To address this challenge, this study investigated the threshold laser power for polymerization of TPP resin (Pthr) and photothermal instability of the nanoparticle (Pthp). Patterned nanoparticle–polymer composite microstructures were fabricated using the novel A-TPP process. Experimental results validated the feasibility of the developed acoustic field-assisted TPP process on printing anisotropic composites with spatially controlled material compositions.


2010 ◽  
Vol 100 (2) ◽  
pp. 359-364 ◽  
Author(s):  
I. Sakellari ◽  
A. Gaidukeviciute ◽  
A. Giakoumaki ◽  
D. Gray ◽  
C. Fotakis ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 615 ◽  
Author(s):  
Chow-Shing Shin ◽  
Tzu-Jui Li ◽  
Chih-Lang Lin

Two-photon polymerization enables the extremely high resolution three-dimensional printing of micro-structures. To know the mechanical properties, and better still, to be able to adjust them is of paramount importance to ensuring the proper structural integrity of the printed products. In this work, the Young’s modulus is measured on two-photon polymerized micro-cantilever bars. Optimizing the scanning trajectory of the laser focus points is important in alleviating distortion of the printed bars. By increasing the laser power and decreasing the inter-voxel distances we can double the Young’s modulus. Post-curing with ultraviolet light can approximately quadruple the Young’s modulus. However, the resulting modulus is still only about 0.3% of that of the bulk polymerized material.


2014 ◽  
Vol 105 (6) ◽  
pp. 061101 ◽  
Author(s):  
Shi-Jie Zhang ◽  
Yan Li ◽  
Zhao-Pei Liu ◽  
Jin-Li Ren ◽  
Yun-Feng Xiao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rino Saiga ◽  
Masayuki Uesugi ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
Yoshio Suzuki ◽  
...  

AbstractBrain blood vessels constitute a micrometer-scale vascular network responsible for supply of oxygen and nutrition. In this study, we analyzed cerebral tissues of the anterior cingulate cortex and superior temporal gyrus of schizophrenia cases and age/gender-matched controls by using synchrotron radiation microtomography or micro-CT in order to examine the three-dimensional structure of cerebral vessels. Over 1 m of cerebral blood vessels was traced to build Cartesian-coordinate models, which were then used for calculating structural parameters including the diameter and curvature of the vessels. The distribution of vessel outer diameters showed a peak at 7–9 μm, corresponding to the diameter of the capillaries. Mean curvatures of the capillary vessels showed a significant correlation to the mean curvatures of neurites, while the mean capillary diameter was almost constant, independent of the cases. Our previous studies indicated that the neurites of schizophrenia cases are thin and tortuous compared to controls. The curved capillaries with a constant diameter should occupy a nearly constant volume, while neurons suffering from neurite thinning should have reduced volumes, resulting in a volumetric imbalance between the neurons and the vessels. We suggest that the observed structural correlation between neurons and blood vessels is related to neurovascular abnormalities in schizophrenia.


2020 ◽  
Vol 9 (1) ◽  
pp. 1118-1136
Author(s):  
Zhenjia Huang ◽  
Gary Chi-Pong Tsui ◽  
Yu Deng ◽  
Chak-Yin Tang

AbstractMicro/nano-fabrication technology via two-photon polymerization (TPP) nanolithography is a powerful and useful manufacturing tool that is capable of generating two dimensional (2D) to three dimensional (3D) arbitrary micro/nano-structures of various materials with a high spatial resolution. This technology has received tremendous interest in cell and tissue engineering and medical microdevices because of its remarkable fabrication capability for sophisticated structures from macro- to nano-scale, which are difficult to be achieved by traditional methods with limited microarchitecture controllability. To fabricate precisely designed 3D micro/nano-structures for biomedical applications via TPP nanolithography, the use of photoinitiators (PIs) and photoresists needs to be considered comprehensively and systematically. In this review, widely used commercially available PIs are first discussed, followed by elucidating synthesis strategies of water-soluble initiators for biomedical applications. In addition to the conventional photoresists, the distinctive properties of customized stimulus-responsive photoresists are discussed. Finally, current limitations and challenges in the material and fabrication aspects and an outlook for future prospects of TPP for biomedical applications based on different biocompatible photosensitive composites are discussed comprehensively. In all, this review provides a basic understanding of TPP technology and important roles of PIs and photoresists for fabricating high-precision stimulus-responsive micro/nano-structures for a wide range of biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document