scholarly journals Optimization Algorithms for System Integration

2008 ◽  
Vol 56 ◽  
pp. 514-523
Author(s):  
Costas Papadimitriou ◽  
Evaggelos Ntotsios

This work outlines the optimization algorithms involved in integrating system analysis and measured data collected from a network of sensors. The integration is required for structural health monitoring problems arising in structural dynamics and related to (1) model parameter estimation used for finite element model updating, (2) model-based damage detection in structures and (3) optimal sensor location for parameter estimation and damage detection. These problems are formulated as single- and multi-objective optimization problems of continuous or discrete-valued variables. Gradient-based, evolutionary, hybrid and heuristic algorithms are presented that effectively address issues related to the estimation of multiple local/global solutions and computational complexity arising in single and multi-objective optimization involving continuous and discrete variables.

2020 ◽  
Vol 8 (1) ◽  
pp. 229-241
Author(s):  
Farid Shayesteh ◽  
Reihaneh Kardehi Moghaddam

Multi-objective optimization problems are so designed that they simultaneously minimize several objectives functions (which are sometimes contradictory). In most cases, the objectives are in conflict with each other such that optimization of one objective does not lead to the optimization of another ones. Therefore, we should achieve a certain balance of goals to solve these problems, which usually requires the application of an intelligent method. In this regard, use of meta-heuristic algorithms will be associated with resolved problems. In this paper, we propose a new multi-objective firefly optimization method which is designed based on the law of attraction and crowding distance. The proposed methods efficiency has been evaluated by three valid test functions containing convex, nonconvex and multi discontinuous convex Pareto fronts. Simulation results confirm the significant accuracy of proposed method in defining the Pareto front for all three test functions. In addition, the simulation results indicates that proposed algorithm has higher accuracy and greater convergence speed, compared to other well known multi-objective algorithms such as non-dominated sorting genetic algorithm, Bees algorithm, Differential Evolution algorithm and Strong Pareto Evolutionary Algorithm.


2018 ◽  
Author(s):  
Florian Häse ◽  
Loic Roch ◽  
Alan Aspuru-Guzik

<div><div>We introduce Chimera, a general purpose achievement scalarizing function (ASF) for multi-objective optimization problems in experiment design. Chimera combines concepts of a priori scalarizing with ideas from lexicographic approaches. It constructs a single merit-based function which implicitly accounts for a provided hierarchy in the objectives. The performance of the suggested ASF is demonstrated on several well-established analytic multi-objective benchmark sets using different single-objective optimization algorithms. We further illustrate the performance and applicability of Chimera on two practical applications: (i) the auto-calibration of a virtual robotic sampling sequence for direct-injection, and (ii) the inverse-design of a system for efficient excitation energy transport. The results indicate that Chimera enables a wide class of optimization algorithms to rapidly find solutions. The presented applications highlight the interpretability of Chimera to corroborate design choices on tailoring system parameters. Additionally, Chimera appears to be applicable to any set of n unknown objective functions, and more importantly does not require detailed knowledge about these objectives. We recommend the use of Chimera in combination with a variety of optimization algorithms for an efficient and robust optimization of multi-objective problems.</div></div><div><br></div>


Author(s):  
R Venkata Rao ◽  
Hameer Singh Keesari

Abstract This work proposes a metaphor-less and algorithm-specific parameter-less algorithm, named as self-adaptive population Rao algorithm, for solving the single-, multi-, and many-objective optimization problems. The proposed algorithm adapts the population size based on the improvement in the fitness value during the search process. The population is randomly divided into four sub-population groups. For each sub-population, a unique perturbation equation is randomly allocated. Each perturbation equation guides the solutions toward different regions of the search space. The performance of the proposed algorithm is examined using standard optimization benchmark problems having different characteristics in the single- and multi-objective optimization scenarios. The results of the application of the proposed algorithm are compared with those obtained by the latest advanced optimization algorithms. It is observed that the results obtained by the proposed method are superior. Furthermore, the proposed algorithm is used to identify optimum design parameters through multi-objective optimization of a fertilizer-assisted microalgae cultivation process and many-objective optimization of a compression ignition biodiesel engine system. From the results of the computational tests, it is observed that the performance of the self-adaptive population Rao algorithm is superior or competitive to the other advanced optimization algorithms. The performances of the considered bio-energy systems are improved by the application of the proposed optimization algorithm. The proposed optimization algorithm is more robust and may be easily extended to solve single-, multi-, and many-objective optimization problems of different science and engineering disciplines.


2021 ◽  
Vol 20 (Number 2) ◽  
pp. 171-211
Author(s):  
Shaymah Akram Yasear ◽  
Ku Ruhana Ku-Mahamud

Multi-objective swarm intelligence (MOSI) metaheuristics were proposed to solve multi-objective optimization problems (MOPs) that consists of two or more conflict objectives, in which improving an objective leads to the degradation of the other. The MOSI algorithms are based on the integration of single objective algorithms and multi-objective optimization (MOO) approach. The MOO approaches include scalarization, Pareto dominance, decomposition and indicator-based. In this paper, the status of MOO research and state-of-the-art MOSI algorithms namely, multi-objective particle swarm, artificial bee colony, firefly algorithm, bat algorithm, gravitational search algorithm, grey wolf optimizer, bacterial foraging and moth-flame optimization algorithms have been reviewed. These reviewed algorithms were mainly developed to solve continuous MOPs. The review is based on how the algorithms deal with objective functions using MOO approaches, the benchmark MOPs used in the evaluation and performance metrics. Furthermore, it describes the advantages and disadvantages of each MOO approach and provides some possible future research directions in this area. The results show that several MOO approaches have not been used in most of the proposed MOSI algorithms. Integrating other different MOO approaches may help in developing more effective optimization algorithms, especially in solving complex MOPs. Furthermore, most of the MOSI algorithms have been evaluated using MOPs with two objectives, which clarifies open issues in this research area.


2018 ◽  
Author(s):  
Florian Häse ◽  
Loic Roch ◽  
Alan Aspuru-Guzik

<div><div>We introduce Chimera, a general purpose achievement scalarizing function (ASF) for multi-objective optimization problems in experiment design. Chimera combines concepts of a priori scalarizing with ideas from lexicographic approaches. It constructs a single merit-based function which implicitly accounts for a provided hierarchy in the objectives. The performance of the suggested ASF is demonstrated on several well-established analytic multi-objective benchmark sets using different single-objective optimization algorithms. We further illustrate the performance and applicability of Chimera on two practical applications: (i) the auto-calibration of a virtual robotic sampling sequence for direct-injection, and (ii) the inverse-design of a system for efficient excitation energy transport. The results indicate that Chimera enables a wide class of optimization algorithms to rapidly find solutions. The presented applications highlight the interpretability of Chimera to corroborate design choices on tailoring system parameters. Additionally, Chimera appears to be applicable to any set of n unknown objective functions, and more importantly does not require detailed knowledge about these objectives. We recommend the use of Chimera in combination with a variety of optimization algorithms for an efficient and robust optimization of multi-objective problems.</div></div><div><br></div>


2016 ◽  
Vol 6 (2) ◽  
pp. 54
Author(s):  
Joaquín Javier Meza Álvarez ◽  
Juan Manuel Cueva Lovelle ◽  
Helbert Eduardo Espitia

El enfoque evolutivo como también el comportamiento social han mostrado ser una muy buena alternativa en los problemas de optimización donde se presentan varios objetivos a optimizar. De la misma forma, existen todavía diferentes vias para el desarrollo de este tipo de algoritmos. Con el fin de tener un buen panorama sobre las posibles mejoras que se pueden lograr en los algoritmos de optimización bio-inspirados multi-objetivo es necesario establecer un buen referente de los diferentes enfoques y desarrollos que se han realizado hasta el momento.En este documento se revisan los algoritmos de optimización multi-objetivo más recientes tanto genéticos como basados en enjambres de partículas. Se realiza una revisión critica con el fin de establecer las características más relevantes de cada enfoque y de esta forma identificar las diferentes alternativas que se tienen para el desarrollo de un algoritmo de optimización multi-objetivo bio-inspirado.Review about genetic multi-objective optimization algorithms and based in particle swarmABSTRACTThe evolutionary approach as social behavior have proven to be a very good alternative in optimization problems where several targets have to be optimized. Likewise, there are still different ways to develop such algorithms. In order to have a good view on possible improvements that can be achieved in the optimization algorithms bio-inspired multi-objective it is necessary to establish a good reference of different approaches and developments that have taken place so far. In this paper the algorithms of multi-objective optimization newest based on both genetic and swarms of particles are reviewed. Critical review in order to establish the most relevant characteristics of each approach and thus identify the different alternatives have to develop an optimization algorithm multi-purpose bio-inspired design is performed.Keywords: evolutionary computation, evolutionary multi-objective optimization.


2014 ◽  
Vol 1037 ◽  
pp. 383-388
Author(s):  
Qiong Yuan ◽  
Guang Ming Dai

Solving large-dimensional multi-objective optimization problems is one of the focus research areas of multi-objective optimization evolutionary . When using traditional multi-objective optimization algorithms to solve large-dimensional multi-objective optimization problems,we found that the unsatisfactory optimizing results often exist. To overcome this flaw, in this paper we studied scalable dominant mechanism and proposed a D dominant strategy. According to the superior theory of D strategy ,we improved the current four kinds of typical multi-objective optimization evolutionary algorithms. The numerical comparison test on DTLZ1-6 (20) questions which were solved by the improved algorithms indicated that D strategy had in varying degrees improved the algorithms for solving large-dimensional multi-objective optimization problems .Thus ,we confirmed that the D strategy for solving large-dimensional multi-objective optimization problems is effective.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC&amp;rsquo;17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Sign in / Sign up

Export Citation Format

Share Document