Functional Characterisations of Hybrid Nanocomposite Films Based on Polyaniline and Carbon Nanotubes

2012 ◽  
Vol 79 ◽  
pp. 81-86 ◽  
Author(s):  
M. Federica de Riccardis ◽  
V. Martina ◽  
Daniela Carbone ◽  
Paolo Rotolo

The combination of nanoparticles and conducting polymers, known as hybrid conducting nanocomposites, is a new emerging field. The combination of conductive polymers, such as polyaniline (PANI), with conductive carbon nanotubes (CNTs) has already shown some synergistic properties. As a consequence, they have a variety of applications, such as sensors, actuators, touch screens, etc.. Usually PANI and CNTs are combined by using electrochemical synthesis starting with the monomer aniline. In this work PANI-CNTs nanocomposite films were obtained by using different combinations of two methods, Electrochemical Deposition (ELD) and Electrophoretic Deposition (EPD). The samples prepared by using these combined methods were compared with the material prepared by the usual electrochemical synthesis. Therefore, all the films so prepared were characterised and their electrochemical properties were investigated, particularly for evaluating their use as supercapacitor components.

2009 ◽  
Vol 21 (3-5) ◽  
pp. 557-562 ◽  
Author(s):  
Viorel Brânzoi ◽  
Luisa Pilan ◽  
Florina Brânzoi

2020 ◽  
Vol 16 (4) ◽  
pp. 478-494 ◽  
Author(s):  
Florentina Golgovici ◽  
Liana Anicai ◽  
Andreea Florea ◽  
Teodor Visan

Background: Deep eutectic solvents (DESs) represent a new generation of ionic liquids which are widely promoted as “green solvents”. They are gaining widespread application in materials chemistry and electrochemistry. DESs are defined as eutectic mixtures of quaternary ammonium salt with a hydrogen bond donor in certain molar ratios. Their use as solvents for electrochemical synthesis of conducting polymers could influence the polymer properties and reduce their economic cost. Objective: This review presents the most recent results regarding the electropolymerization of common conductive polymers involving choline chloride based ionic liquids. New findings from our laboratory on the electrochemical growth of conductive polymers are also discussed. Methods: The electrochemical polymerization mechanisms during synthesis of polypyrrole (PPy), polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) using various formulations of DESs are reviewed, as well as their characteristics, mainly from surface morphology view point. Results: Some general information related to the preparation and characterization of DESs is also presented, followed by an overview of the recent advances in the field of electropolymerization using DESs. Conclusion: Electropolymerization of conducting polymers involving DESs represents an attractive route of synthesis due to their compositional flexibility which makes possible the preparation of unlimited formulations further influencing the polymer morphology and properties. The use of these inexpensive eutectic mixtures has a large potential to contribute to the development of more sustainable technological processes meeting many of the required features characteristic to the green chemistry.


2015 ◽  
Vol 51 (16) ◽  
pp. 3391-3394 ◽  
Author(s):  
Sang Ha Lee ◽  
Hyuck Lee ◽  
Misuk Cho ◽  
Youngkwan Lee

Titanium dioxide dendrites were successfully prepared by a simple electrochemical deposition technique in acidic solution.


2018 ◽  
Vol 42 (5) ◽  
pp. 3748-3757 ◽  
Author(s):  
Abraham Daniel Arulraj ◽  
Ellairaja Sundaram ◽  
Vairathevar Sivasamy Vasantha ◽  
Bernaurdshaw Neppolian

This study mainly focuses on the electrochemical-assisted synthesis of conducting polymers such as polypyrrole (PPy) with sodium dodecyl sulfate (SDS) as a surfactant and supported with functionalized multi-walled carbon nanotubes (f-MWCNTs).


2002 ◽  
Vol 726 ◽  
Author(s):  
Pedro Gómez-Romero ◽  
Monica Lira-Cantú

AbstractElectron or hole conductivity in conjugated polymers provided their initial thrust, but conductive polymers also display interesting electrochemical properties which constitute the base for their application in different types of electro-ionic devices. A further step in the development of functional materials based on conductive polymers is provided by the design of hybrid materials. In hybrid organic-inorganic materials based on conductive polymers, the electroactivity of molecular doping species or other inorganic components is added to that of the polymers themselves, leading to a whole new spectrum of hybrid materials that allow for the harnessing and control of the electrochemical properties of molecular species and put them to work in the development of all sorts of functional materials and devices, from sensors or catalysts to rechargeable lithium batteries, supercapacitors or photoelectrochemical devices. In this chapter we present several examples of this type of functional materials, their synthesis, properties and applications. We will present a general overview of this field and will discuss in some detail the design of insertion electrodes based on conducting polymers and hybrid organicinorganic materials based on them, analyzing their peculiar ion-inserting mechanisms and their possible application in energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document