Reed as a Thermal Insulation Material: Experimental Characterisation of the Physical and Thermal Properties

Author(s):  
Raphaele Malheiro ◽  
Adriana Ansolin ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
Lívia Cosentino ◽  
...  

The building sector plays a significant role in reducing global energy use and carbon emissions. In the European Union (EU), the building stock represents 40% of total energy use and in which cooling and heating systems represent over 50%. Portugal is one of the EU countries where the consequences of energy poverty are most evident due to the families' financial inability to adequately climate their homes. The reasons are several, but they are mainly linked to buildings' poor passive thermal performance, resulting from inadequate adaptation to the climatic context and reduced thermal insulation. Thus, it is necessary to develop solutions to increase buildings’ thermal performance and reduce their potential environmental impact, which arises mainly from the significant use of active systems. In this sense, natural building materials are a promising solution, reducing energy use and carbon emissions related to buildings. This research studies the potential use of reed found in Portugal (Arundo donax) as a thermal insulation material. Its physical characterisation and the influence of geometry configuration on its thermal performance are evaluated. Its durability was studied too. Reed stalks were used to carry out the physical and durability tests. A reed board (150 x 150 mm) was built, and its thermal performance was tested in a hotbox. According to the results, the characteristics of reeds found in Portugal make it suitable to be used as a building material. Furthermore, regardless of the configuration studied, the reeds have a satisfactory thermal performance to be used as thermal insulation, under the requirements defined by Portuguese thermal regulation, Re ≥ 0.30 (m2.oC)/W. There is a trend to the mould growth in the reed, but only under favourable conditions. Additionally, considering the abundance of reed throughout the Portuguese territory, this is an eco-friendly and low-cost option that gathers all requirements to be more used in the construction market.

2011 ◽  
Vol 250-253 ◽  
pp. 507-512
Author(s):  
Zi Sheng Wang ◽  
Hao Chi Tu ◽  
Jin Xiu Gao ◽  
Guo Dong Qian ◽  
Xian Ping Fan ◽  
...  

Aerogel is regarded as one kind of super thermal insulation materials which could be large-scalely used as building materials. However, the aerogel’s production cost and poor mechanical property limit the its applications. In this paper, we put forward a new low cost way to produce a novel building thermal insulation material: synthesized the aerogel within the expanded perlite’s pores, and using sodium silicate as precursor without adopting supercritical fluid drying and surface modification. The thermal conductivity of expanded perlite was successfully decreased after modified by aerogel.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 344 ◽  
Author(s):  
Ricardo Ramírez-Villegas ◽  
Ola Eriksson ◽  
Thomas Olofsson

The scope of this study is to assess how different energy efficient renovation strategies affect the environmental impacts of a multi-family house in a Nordic climate within district heating systems. The European Union has set ambitious targets to reduce energy use and greenhouse gas emissions by the year 2030. There is special attention on reducing the life cycle emissions in the buildings sector. However, the focus has often been on new buildings, although existing buildings represent great potential within the building stock in Europe. In this study, four different renovation scenarios were analyzed with the commercially available life cycle assessment software that follows the European Committee for Standardization (CEN) standard. This study covers all life cycle steps from the cradle to the grave for a residential building in Borlänge, Sweden, where renewable energy dominates. The four scenarios included reduced indoor temperature, improved thermal properties of building material components and heat recovery for the ventilation system. One finding is that changing installations gives an environmental impact comparable to renovations that include both ventilation and building facilities. In addition, the life cycle steps that have the greatest environmental impact in all scenarios are the operational energy use and the building and installation processes. Renovation measures had a major impact on energy use due to the cold climate and low solar irradiation in the heating season. An interesting aspect, however, is that the building materials and the construction processes gave a significant amount of environmental impact.


2015 ◽  
Vol 1120-1121 ◽  
pp. 523-530 ◽  
Author(s):  
Xin Zuo Huang ◽  
Long Nan Huang ◽  
Xin Bo Wang

Thermal insulation materials are the most crucial composition in the external wall insulation technology. For the poor fireproofing of organic thermal insulation material, the inorganic/organic composite foamed thermal insulation material is prepared by optimizing inorganic foaming reaction. Inorganic polymer cross-linking system is used as the skeletal structure of foamed composite material and the modified urea-formaldehyde resin with excellent fire resistance is used as toughening material. The analysis results indicate that the composite structure with metal phosphate as skeleton and modified urea-formaldehyde resin as toughened-membrane is formed during the preparation process of the composite foamed material. The property test shows that the thermal conductivity is 0.0389W/m·K, the compressive strength is 180kPa, temperature rise in furnace is less than 20°C and the mass-loss rate is less than 50%. What is more there is no obvious flame appeared in the building materials incombustibility test. Therefore the composite foamed material can be judged to be A-grade incombustible thermal insulation material.


2013 ◽  
Vol 662 ◽  
pp. 433-436
Author(s):  
Jiang Zhu ◽  
Guo Zhong Li

Vitrified micro bubbles thermal insulation material was made of vitrified micro bubbles, cement, fly ash, gypsum and sodium silicate, by molding process. VAE emulsion and stearic acid-polyvinyl alcohol emulsion were added to improve water resistance of the material. Mixed with 10% VAE emulsion and 5% stearic acid-polyvinyl alcohol emulsion, properties of the material are followed as: flexural strength 0.64MPa, compressive strength 1.35MPa, softening coefficient 0.71 and 2h volumetric water absorption 6.9%.


Sign in / Sign up

Export Citation Format

Share Document