Low Temperature Nitriding of a Martensitic Stainless Steel

2011 ◽  
Vol 312-315 ◽  
pp. 994-999 ◽  
Author(s):  
Riza Karadas ◽  
Ozgur Celik ◽  
Huseyin Cimenoglu

Nitriding is as an effective technique applied for many years to improve the surface hardness and wear resistance of low carbon and tool steels [1]. In the case of stainless steels, increase of surface hardness and wear resistance accompany by a drop in corrosion resistance due to the precipitation of CrN. In this respect, many attempts have been made to modify the surfaces of austenitic stainless steels to increase their surface hardness and wear resistance without scarifying the corrosion resistance [2-6]. It is finally concluded that, nitriding at temperatures lower than conventional nitriding process (which is generally about 550°C) has potentiality to produce a nitrogen expanded austenite (also known as S-phase), on the surface without formation of CrN. Due to the superb properties of the S-phase, the low temperature nitrided austenitic stainless steels exhibit very high surface hardness, a good wear resistance, and more importantly, an excellent corrosion resistance. Recently some attempts have been made to apply low temperature nitriding to martensitic stainless steels, which are widely used in the industries of medicine, food, mold and other civil areas [7-9]. In these works, where nitriding has been conducted by plasma processes, superior surface hardness, along with excellent wear and corrosion resistances have been reported for AISI 410 and AISI 420 grade martensitic stainless steels. This work focuses on low temperature gas nitriding of AISI 420 grade martensitic stainless steel in a fluidized bed reactor. In this respect the microstructures, phase compositions, hardness, wear and corrosion behaviours of the original and nitrided martensitic stainless steels have been compared.

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1845
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

Low-temperature nitriding allows to improve surface hardening of austenitic stainless steels, maintaining or even increasing their corrosion resistance. The treatment conditions to be used in order to avoid the precipitation of large amounts of nitrides are strictly related to alloy composition. When nickel is substituted by manganese as an austenite forming element, the production of nitride-free modified surface layers becomes a challenge, since manganese is a nitride forming element while nickel is not. In this study, the effects of nitriding conditions on the characteristics of the modified surface layers obtained on an austenitic stainless steel having a high manganese content and a negligible nickel one, a so-called nickel-free austenitic stainless steel, were investigated. Microstructure, phase composition, surface microhardness, and corrosion behavior in 5% NaCl were evaluated. The obtained results suggest that the precipitation of a large volume fraction of nitrides can be avoided using treatment temperatures lower than those usually employed for nickel-containing austenitic stainless steels. Nitriding at 360 and 380 °C for duration up to 5 h allows to produce modified surface layers, consisting mainly of the so-called expanded austenite or gN, which increase surface hardness in comparison with the untreated steel. Using selected conditions, corrosion resistance can also be significantly improved.


2014 ◽  
Vol 881-883 ◽  
pp. 1263-1267 ◽  
Author(s):  
Shuo Zhao ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Y. Shan

The duplex stainless steel has better pitting corrosion resistance but lacks of hardness and wear resistance. Therefore, the low temperature nitriding treatment can be used to increase its hardness and wear resistance or to gain more perfect corrosion resistance. The plasma nitriding of SS2205 stainless steel was carried out at temperatures from 693k to 753k for 4 hours at anodic potential. The nitrided samples were analyzed by optical microscopy, X-ray diffraction, SEM-EDX analysis, microhardness testing, wear and corrosion evaluation. The XRD analysis of all treated samples showed that the nitrogen-expanded austenite phase was formed. Both α and γ phase of the substrate were transformed into γNduring plasma nitriding. Observing the nitrided layers formed on α and γ phase, the ones situated in the austenite were thinner than the ones in the ferrite. This phenomenon was more evident at low temperature, which confirmed that the nitrogen has a higher diffusion rate in the ferrite during plasma nitriding treatment. The surface hardness of nitrided layer was increased with the nitriding temperature. The highest hardness value obtained in this experiment was about 1300 HV0.05which was 4 times as the original sample (380 HV0.05). Furthermore, through the wear and corrosion property tests, it was shown that anodic plasma nitriding improved the wear resistance and corrosion resistance of the duplex stainless steel.


2019 ◽  
Author(s):  
Ulli Oberste-Lehn ◽  
Andreas Karl ◽  
Chad Beamer

Abstract The main goal of low temperature surface hardening of austenitic stainless steels is a significant increase of surface hardness while at the same time maintaining the superior corrosion resistance of these alloys. The treatment temperature has to be low enough to achieve a precipitation free diffusion zone, yet high enough to allow sufficient diffusion depths needed for technical applications. The results are often influenced by the machining of parts prior to the surface treatment. Best results are usually achieved on solution annealed and (electro-)polished surfaces, but customer needs for certain manufacturing routes, strength considerations and overall production costs often do not allow for such additional processes. This paper shall give a basic overview on machinability of austenitic stainless steels and how different machining operations like turning, cold forming, grinding and additive manufacturing influence the result of low temperature surface hardening. Possible machining process optimizations for the different machining operations are presented in order to increase diffusion depth, surface hardness, reproducibility and corrosion resistance without altering the hardening process parameters.


Alloy Digest ◽  
2015 ◽  
Vol 64 (6) ◽  

Abstract AK 420 martensitic stainless steel has good corrosion resistance with increased strength over other 400 martensitic stainless steels. The alloy is magnetic. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1212. Producer or source: AK Steel Corporation.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Crucible CPM 420V is a unique tool steel made by the Crucible particle metallurgy (CPM) process. The alloy is designed from a martensitic stainless steel based analysis with added carbon and vanadium for exceptionally good wear resistance. CPM 420V offers significant improvements over CPM 440V in both wear and corrosion resistance. The exceptional wear resistance and good corrosion resistance of CPM 420V make it an excellent candidate to replace 440C and other corrosion- and wear-resistant materials, particularly where increased wear resistance is a primary concern. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on corrosion and wear resistance as well as heat treating and machining. Filing Code: SS-736. Producer or source: Crucible Service Centers.


2008 ◽  
Vol 373-374 ◽  
pp. 260-263 ◽  
Author(s):  
Guang Yao Xiong ◽  
Bo Lin He ◽  
Rui Zou

The wear-resistance, corrosion resistance, hardness can be greatly increased by using low temperature QPQ complex salt-bath treatment. And it is a new strengthening method without distortion in the treating process. The surface of 4Cr14Ni14W2Mo steel was treated using this method. The microstructure and depth of the treated surface for the steel were analyzed using SEM. The sliding wear resistance was tested on the M-2000 tester and the micro-hardness was tested using 401MVA microscopy hardness tester. The corrosion resistance was tested in the 5%NaCl water by using spraying method. The experimental results indicate that a certain depth of white layer and diffusion layer of the steel can be obtained by using low temperature QPQ complex salt-bath treatment. The nitriding compound layer with high hardness, superior wear resistance and stable microstructure, can also be obtained on the surface of the parts. The highest hardness in the surface is HV0.11012. The surface hardness is 2.8 times higher than that of inner part. The depth of white layer is from 10 to 12μm. The experimental results and applied results show that the low temperature QPQ complex salt-bath treatment has many advantages, such as fast nitriding speed, uniform heating, short process time, low treating temperature, small distortion, high production rate, low cost, stable nitriding quality no pollution and so on.


Sign in / Sign up

Export Citation Format

Share Document