scholarly journals Novel Method of Severe Plastic Deformation - Continuous Closed Die Forging: CP Aluminum Case Study

2018 ◽  
Vol 385 ◽  
pp. 302-307 ◽  
Author(s):  
Alexander P. Zhilyaev ◽  
Sandra Rodriguez ◽  
Jessica Calvo ◽  
Jose María Cabrera

There is a large number of methods for severe plastic deformation (SPD). Multidirectional forging (MDF) is probably one of the most easily scalable for industrial application. In general, two main conditions need to be fulfilled for successful SPD processing: constant sample geometry and application of a quasi-hydrostatic pressure. The first condition is necessary for strain accumulation by repetitive deformation and the second one helps preventing cracking in the specimens with high accumulated strain. However, MDF is not providing quasi-hydrostatic condition in the processed sample. This paper reports a novel method for severe plastic deformation, namely continuous closed die forging (CCDF), which fulfils both requirements for the successful deformation of samples to a very high accumulated strain. Commercially pure aluminum (1050) was processed to a total strain of 24 by CCDF. After processing, the microstructure was refined down to a mean grain size of 0.78 μm. Tensile testing showed good mechanical properties: yield strength and ultimate tensile strength of the ultrafine-grained aluminum were 180 and 226 MPa, respectively. Elongation to rupture was about 18%. The microstructure, microhardness and grain boundary statistics are discussed with regard to the high mechanical properties of the UFG aluminum processed by this novel method.

2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


2014 ◽  
Vol 803 ◽  
pp. 216-221 ◽  
Author(s):  
Alin Marian Cazac ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Cristian Predescu ◽  
Andrei Victor Sandhu ◽  
Costică Bejinariu

The paper aims the determination of the friction force by means of external friction stress, at the severe plastic deformation processing using cyclic closed-die forging method. It is known that the total force used at the severe plastic deformation by the method of multiaxial forging is being composed by the deformation force itself and the friction force between the semi-product and the deformation tools. Once the friction stresses known, for a certain material, one can determine the friction force corresponding for a given deformation of a semi-product of a particular shape and sizes. By means of the flowing curve of the semi-product material one can determine the deformation force, which together with the friction force give the total necessary force for a deformation and so one can choose the necessary equipment for the processing of the material by severe plastic deformation. For this purpose it has been severely plastic deformed by the method of multiaxial forging, a semi-product having the sizes 10x10x20 mm, the finished part having the same sizes and shape. It has been measured the deformation force and the extraction force of the finished part from the cavity of the active plate, the late being used for the determination of the friction stress between the semi-product and the active plate.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


2018 ◽  
Vol 275 ◽  
pp. 134-146
Author(s):  
Stanislav Rusz ◽  
Ondřej Hilšer ◽  
Stanislav Tylšar ◽  
Lubomír Čížek ◽  
Tomasz Tański ◽  
...  

The technology of structure refinement in materials with the aim of achieving substantial mechanical properties and maintaining the required plasticity level is becoming increasingly useful in industrial practice. Magnesium alloys are very progressive materials for utilization in practice thanks to their high strength-to-weight ratios (tensile strength/density). The presented paper analyses the effect of the input heat treatment of the AZ31 alloy on the change of structure and strength properties through the process of severe plastic deformation (SPD), which finds an increasing utilization, especially in the automotive and aviation industry. For the study of the influence of the SPD process (ECAP method) on the properties of the AZ31 alloy, two types of thermal treatment of the initial state of the structure were selected. The analysis of the structure of the AZ31 alloy was performed in the initial state without heat treatment and subsequently after heat treatment. In the next part, the influence of the number of passes on the strengthening curves was evaluated. Mechanical properties of the AZ31 alloy after ECAP were evaluated by hardness measurement and completed by structure analysis.


Sign in / Sign up

Export Citation Format

Share Document