Chemical Reaction and Thermal Radiation Effects on MHD Mixed Convection over a Vertical Plate with Variable Fluid Properties

2018 ◽  
Vol 387 ◽  
pp. 332-342
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
Oluwole Daniel Makinde

This article investigates the magnetohydrodynamic mixed convective heat, and mass transfer flow of an incompressible, viscous, Boussinesq, electrically conducting fluid from a vertical plate in a sparsely packed porous medium in the presence of thermal radiation and an nth order homogeneous chemical reaction between the fluid and the diffusing species numerically. In this investigation, the fluid and porous properties like thermal and solutal diffusivity, permeability and porosity are all considered to be vary. The governing non-linear PDE's for the fluid flow are derived and transformed into a system of ODE's using an appropriate similarity transformation. The resultant equations are solved numerically using shooting technique and Runge-Kutta integral scheme with the help of Newton-Raphson algorithm in order to know the characteristics of the fluid for various non-dimensional parameters which are controlling the physical system graphically. The results of the numerical scheme are validated and a numerical comparison has been made with the available literature in the absence of some parameters and found that in good agreement. Nomenclature

2018 ◽  
Vol 388 ◽  
pp. 328-343
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
P.A. Dinesh

A numerical computation has been carriedout for the steady, mixed convective, incompressible, viscous, electrically conducting couple stress fluid through a vertical plate with variable fluid properties in a porous medium. A uniform magnetic field is applied in the transverse direction and parallel to the vertical plate of the physical model and governing equations are derived for it."Using a suitable similarity transformation, governed PDE's are transformed into a set of ODE's which are highly non-linear coupled equations. An advanced Shooting technique is adopted to compute the variations of velocity, temperature, concentration in terms of non-dimensional parameters. Also physical interpretation of non-dimensional parameters like couple stress parameter magnetic field Prandtl number Schmidt number thermal conductivity and solutal diffusivity parameters are examined through plots for both variable permeability and uniform permeability."From the numerical results, an excellent agreement has been observed for the present results, as well as comparison is made between the present and the earlier works for a particular case of the problem.


2018 ◽  
Vol 388 ◽  
pp. 190-203
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
B. Mallikarjuna ◽  
P.A. Dinesh

A numerical computation has been carried out to study, MHD flow of an electrically conducting viscous fluid from a semi-infinite vertical plate in a porous medium in the presence of heat source and homogeneous first order chemical reaction. The fluid and porous properties, thermal and solutal diffusivity, permeability and porosity are considered to be varied. The governing non-linear partial differential equations for the fluid flow are derived and transformed into a system of ordinary differential equations using a suitable similarity transformations. A numerical computation of shooting technique is employed along Runge Kutta method of fourth order with the help of Newton-Raphson algorithm to compute the solution and analyze the behavior of velocity, temperature, concentration, skin friction, heat and mass transfer rates graphically for various non-dimensional parameters which are controlling the flow of the physical system. The results of the numerical scheme are validated and a numerical comparison has been made with the available literature in the absence of some parameters and it is found to be in good agreement.


Author(s):  
Pooja P Humane ◽  
Vishwambhar S Patil ◽  
Amar B Patil

The flow of Casson–Williamson fluid on a stretching surface is considered for the study. The movement of fluid is examined under the effect of external magnetic field, thermal radiation and chemical consequences. The model is formed by considering all the physical aspects responsible for the physical mechanism. The formed mathematical model (partial differential equation) is numerically solved after transforming it into an ordinary one (ordinary differential equation) via similarity invariants. The physical mechanism for velocity, temperature, and concentration is examined through the associated parameters like radiation index, Williamson and Casson parameter, suction/injection parameter, porosity index, and chemical reaction parameter.


2020 ◽  
Vol 16 (6) ◽  
pp. 1577-1594
Author(s):  
Kazeem Babawale Kasali ◽  
Yusuf Olatunji Tijani ◽  
Matthew Oluwafemi Lawal ◽  
Yussuff Titilope Lawal

PurposeIn this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects of Soret, Dufour, thermal radiation and chemical reaction.Design/methodology/approachAn appropriate semi-analytical technique called homotopy analysis method (HAM) was used to solve the resulting nonlinear dimensionless boundary value problem, and the method was validated numerically using a finite difference scheme implemented on Maple software.FindingsIt was observed that apart from excellence agreement with the results in literature, the results obtained gave further insights into the behaviour of the system.Originality/valueThe purpose of this research is to investigate heat and mass transfer profiles of a MHD viscoelastic fluid flow over an exponentially stretching sheet in the influence of chemical reaction, thermal radiation and cross-diffusion which are hitherto neglected in previous studies.


Sign in / Sign up

Export Citation Format

Share Document