Thermal Radiation and Heat Source Effects on MHD Non-Newtonian Fluid Flow over a Slandering Stretching Sheet with Cross-Diffusion

2018 ◽  
Vol 388 ◽  
pp. 28-38
Author(s):  
Prathi Vijaya Kumar ◽  
S. Mohammed Ibrahim ◽  
Giulio Lorenzini

Magnetohydrodynamic non-Newtonian fluid flow over a stretching sheet with intermittent thickness under multifarious slips is appraised. Williamson fluid pattern is incorporated in this discussion. The energy and concentration equations are confederated with the repercussion of Soret and Dufour. We endorsed homotopy analysis method (HAM) to collocate the solutions of ODE. The graphical and tabular results for velocity, temperature, concentration, friction factor, heat and mass transfer rates when (Newtonian fluid) and (non-Newtonian fluid-Williamson fluid) are secured and discussed in detail.

2020 ◽  
Vol 17 (3) ◽  
pp. 357-371
Author(s):  
Moses Sunday Dada ◽  
Cletus Onwubuoya

Purpose The purpose of this paper is to consider heat and mass transfer on magnetohydrodynamics (MHD) Williamson fluid flow over a slendering stretching sheet with variable thickness in the presence of radiation and chemical reaction. All pertinent flow parameters are discussed and their influence on the hydrodynamics, thermal and concentration boundary layer are presented with the aid of the diagram. Design/methodology/approach The governing partial differential equations are reduced into a system of ordinary differential equations with the help of suitable similarity variables. A discrete version of the homotopy analysis method (HAM) called the spectral homotopy analysis method (SHAM) was used to solve the transformed equations. SHAM is efficient, and it converges faster than the HAM. The SHAM provides flexibility when solving linear ordinary differential equations with the use of the Chebyshev spectral collocation method. Findings The findings revealed that an increase in the variable thermal conductivity hike the temperature and the thermal boundary layer thickness, whereas the reverse is the case for velocity close to the wall. Originality/value The uniqueness of this paper is the exploration of combined effects of heat and mass transfer on MHD Williamson fluid flow over a slendering stretching sheet. The Williamson fluid term in the momentum equation is expressed as a linear function and the viscosity and thermal conductivity are considered to vary in the boundary layer.


2017 ◽  
Vol 377 ◽  
pp. 242-259 ◽  
Author(s):  
Ram Prakash Sharma ◽  
K. Avinash ◽  
N. Sandeep ◽  
Oluwole Daniel Makinde

The influence of thermal radiation on a two-dimensional non-Newtonian fluid flow past a slendering stretching surface is investigated theoretically. Casson and Williamson fluid models are considered with Soret and Dufour effects. The transformed ODEs are solved numerically using the bvp5c Matlab package and dual solutions are executed for Casson and Williamson fluid cases. The influence of various parameters, namely, thermal radiation parameter, cross diffusion parameters and slip parameters on velocity, thermal and concentration distributions are discussed with the assistance of graphs. The local Nusselt and Sherwood numbers are computed and presented through tables. It is observed that the influence of cross diffusion is higher on Williamson flow when equated with the Casson flow.


2011 ◽  
Vol 25 (21) ◽  
pp. 2863-2878 ◽  
Author(s):  
T. HAYAT ◽  
M. AWAIS ◽  
M. SAJID

This paper looks at the mass transfer effects on the unsteady two-dimensional and magnetohydrodynamic flow of an upper-convected Maxwell fluid bounded by a stretching surface. Homotopy analysis method is used for the development of series solution of the arising nonlinear problem. Plots of velocity and concentration fields are displayed and discussed. The values of surface mass transfer and gradient of mass transfer are also tabulated.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
T. Hayat ◽  
M. Mustafa ◽  
S. Obaidat

This communication reports the heat and mass transfer analysis in the stagnation-point flow toward a stretching sheet. An incompressible micropolar fluid takes into account the diffusion-thermo- (Dufour) and thermal-diffusion (Soret) effects. The arising nonlinear differential system is solved by homotopy analysis method. Convergence of the obtained homotopy solutions is clearly justified. Special emphasis has been given to various physical parameters through graphs and tables. It is noticed that fields are influenced appreciably with the variation of embedding parameters. A comparison of the present results with the existing numerical solution is discussed in a limiting sense.


2016 ◽  
Vol 20 (6) ◽  
pp. 1903-1912 ◽  
Author(s):  
Ilyas Khan ◽  
Muhammad Qasim ◽  
Sharidan Shafie

In this paper we study the flow of an incompressible Erying-Powell fluid bounded by a linear stretching surface. The mass transfer analysis in the presence of destructive /generative chemical reactions is also analyzed. A similarity transformation is used to transform the governing partial differential equations into ordinary differential equations. Computations for dimensionless velocity and concentration fields are performed by an efficient approach namely the homotopy analysis method (HAM) and numerical solution is obtained by shooting technique along with Runge-Kutta-Fehlberg integration scheme. Graphical results are prepared to illustrate the details of flow and mass transfer characteristics and their dependence upon the physical parameters. The values for gradient of mass transfer are also evaluated and analyzed. A comparison of the present solutions with published results in the literature is performed and the results are found to be in excellent agreement.


2010 ◽  
Vol 65 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Qasim ◽  
Zaheer Abbas

This investigation deals with the influence of radiation on magnetohydrodynamic (MHD) and mass transfer flow over a porous stretching sheet. Attention has been particularly focused to the unsteadiness. The arising problems of velocity, temperature, and concentration fields are solved by a powerful analytic approach, namely, the homotopy analysis method (HAM). Velocity, temperature, and concentration fields are sketched for various embedded parameters and interpreted. Computations of skin friction coefficients, local Nusselt number, and mass transfer are developed and examined.


2019 ◽  
Vol 16 (6) ◽  
pp. 712-724 ◽  
Author(s):  
Bidemi Olumide Falodun ◽  
Adeola John Omowaye

Purpose This paper aims to address the problem of double-diffusive magnetohydrodynamics (MHD) non-Darcy convective flow of heat and mass transfer over a stretching sheet embedded in a thermally-stratified porous medium. The controlling parameters such as chemical reaction parameter, permeability parameter, etc., are extensively discussed and illustrated in this paper. Design/methodology/approach With the help of appropriate similarity variables, the governing partial differential equations are converted into ordinary differential equations. The transformed equations are solved using the spectral homotopy analysis method (SHAM). SHAM is a numerical method, which uses Chebyshev pseudospectral and homotopy analysis method in solving science and engineering problems. Findings The effects of all controlling parameters are presented using graphical representations. The results revealed that the applied magnetic field in the transverse direction to the flow gives rise to a resistive force called Lorentz. This force tends to reduce the flow of an electrically conducting fluid in the problem of heat and mass transfer. As a result, the fluid velocity reduces in the boundary layer. Also, the suction increases the velocity, temperature, and concentration of the fluid, respectively. The present results can be used in complex problems dealing with double-diffusive MHD non-Darcy convective flow of heat and mass transfer. Originality/value The uniqueness of this paper is the examination of double-diffusive MHD non-Darcy convective flow of heat and mass transfer. It is considered over a stretching sheet embedded in a thermally-stratified porous medium. To the best of the knowledge, a problem of this type has not been considered in the past. A novel method called SHAM is used to solve this modelled problem. The novelty of this method is its accuracy and fastness in computation.


Sign in / Sign up

Export Citation Format

Share Document