Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study

Author(s):  
Vipra Guneta ◽  
Jun Kit Wang ◽  
Saeed Maleksaeedi ◽  
Ze Ming He ◽  
Marcus Thien Chong Wong ◽  
...  

One of the main goals of bone tissue engineering is the development of scaffolds that mimic both functional and structural properties of native bone itself. This study describes the preliminary work carried out to assess the viability of using three dimensional printing (3DP) technology for the fabrication of porous titanium scaffolds with lowered modulus and improved biocompatibility. 3DP enables the manufacturing of three dimensional (3D) objects with a defined structure directly from a Computer Aided Design (CAD). The overall porosity of the 3D structures is contributed by the presence of both pores-by-process (PBP) and pores-by-design (PBD). This study mainly focuses on the PBP, which are formed during the sintering step as the result of the removal of the binding agent polyvinyl alcohol (PVA). Sintering temperatures of 1250oC, 1350oC and 1370oC were used during the fabrication process. Our results showed that by varying the binder percentage and the sintering temperature, pores with diameters in the range of approximately 17-24 μm could be reproducibly achieved. Other physical properties such as surface roughness, porosity and average pore size were also measured for all sample groups. Results from subsequent cell culture studies using adipose tissue-derived mesenchymal stem cells (ASCs) showed improved attachment, viability and proliferation for the 3DP titanium samples as compared to the two-dimensional (2D) dense titanium samples. Hence, based on our current preliminary studies, 3DP technology can potentially be used to fabricate customized, patient-specific metallic bone implants with lowered modulus. This can effectively help in prevention of stress-shielding, and enhancement of implant fixationin vivo. It is envisioned that an optimized combination of binder percentage and sintering temperature can result in the fabrication of scaffolds with the desired porosity and mechanical properties to fit the intended clinical application.

2020 ◽  
Vol 26 (23-24) ◽  
pp. 1303-1311 ◽  
Author(s):  
Chen Shen ◽  
Lukasz Witek ◽  
Roberto L. Flores ◽  
Nick Tovar ◽  
Andrea Torroni ◽  
...  

2019 ◽  
Vol 109 (2) ◽  
pp. 166-173 ◽  
Author(s):  
A.B.V. Pettersson ◽  
M. Salmi ◽  
P. Vallittu ◽  
W. Serlo ◽  
J. Tuomi ◽  
...  

Background and Aims: Additive manufacturing or three-dimensional printing is a novel production methodology for producing patient-specific models, medical aids, tools, and implants. However, the clinical impact of this technology is unknown. In this study, we sought to characterize the clinical adoption of medical additive manufacturing in Finland in 2016–2017. We focused on non-dental usage at university hospitals. Materials and Methods: A questionnaire containing five questions was sent by email to all operative, radiologic, and oncologic departments of all university hospitals in Finland. Respondents who reported extensive use of medical additive manufacturing were contacted with additional, personalized questions. Results: Of the 115 questionnaires sent, 58 received answers. Of the responders, 41% identified as non-users, including all general/gastrointestinal (GI) and vascular surgeons, urologists, and gynecologists; 23% identified as experimenters or previous users; and 36% identified as heavy users. Usage was concentrated around the head area by various specialties (neurosurgical, craniomaxillofacial, ear, nose and throat diseases (ENT), plastic surgery). Applications included repair of cranial vault defects and malformations, surgical oncology, trauma, and cleft palate reconstruction. Some routine usage was also reported in orthopedics. In addition to these patient-specific uses, we identified several off-the-shelf medical components that were produced by additive manufacturing, while some important patient-specific components were produced by traditional methodologies such as milling. Conclusion: During 2016–2017, medical additive manufacturing in Finland was routinely used at university hospitals for several applications in the head area. Outside of this area, usage was much less common. Future research should include all patient-specific products created by a computer-aided design/manufacture workflow from imaging data, instead of concentrating on the production methodology.


2015 ◽  
Vol 1119 ◽  
pp. 239-244
Author(s):  
Yan Xu ◽  
Jian Pin Zhou ◽  
Zheng Ying Wei ◽  
Li Yan Dang ◽  
Feng Lin Wu

Scaffolds material is the key factor for bone tissue engineering, and construction of the scaffolds is also an important part. Adopting the biocompatible, biodegradable, hydroxyapatite (HAP) and sodium alginate (SA) as the molding material, using three-dimensional printing technology, choosing cross grid filling paths, we manufactured the artificial bones through self-developed 3D printing equipment. Then we measured and analyzed important parameters of the work, and did composite culture experiment. It can be seen that the prepared artificial bone scaffold has good biocompatibility. The paper provides a reference for the study of bone tissue engineering materials.


2019 ◽  
Vol 10 ◽  
pp. 204173141882479 ◽  
Author(s):  
Hee-Gyeong Yi ◽  
Yeong-Jin Choi ◽  
Jin Woo Jung ◽  
Jinah Jang ◽  
Tae-Ha Song ◽  
...  

Autologous cartilages or synthetic nasal implants have been utilized in augmentative rhinoplasty to reconstruct the nasal shape for therapeutic and cosmetic purposes. Autologous cartilage is considered to be an ideal graft, but has drawbacks, such as limited cartilage source, requirements of additional surgery for obtaining autologous cartilage, and donor site morbidity. In contrast, synthetic nasal implants are abundantly available but have low biocompatibility than the autologous cartilages. Moreover, the currently used nasal cartilage grafts involve additional reshaping processes, by meticulous manual carving during surgery to fit the diverse nose shape of each patient. The final shapes of the manually tailored implants are highly dependent on the surgeons’ proficiency and often result in patient dissatisfaction and even undesired separation of the implant. This study describes a new process of rhinoplasty, which integrates three-dimensional printing and tissue engineering approaches. We established a serial procedure based on computer-aided design to generate a three-dimensional model of customized nasal implant, and the model was fabricated through three-dimensional printing. An engineered nasal cartilage implant was generated by injecting cartilage-derived hydrogel containing human adipose-derived stem cells into the implant containing the octahedral interior architecture. We observed remarkable expression levels of chondrogenic markers from the human adipose-derived stem cells grown in the engineered nasal cartilage with the cartilage-derived hydrogel. In addition, the engineered nasal cartilage, which was implanted into mouse subcutaneous region, exhibited maintenance of the exquisite shape and structure, and striking formation of the cartilaginous tissues for 12 weeks. We expect that the developed process, which combines computer-aided design, three-dimensional printing, and tissue-derived hydrogel, would be beneficial in generating implants of other types of tissue.


2004 ◽  
Vol 823 ◽  
Author(s):  
Victor J. Chen ◽  
Laura A. Smith ◽  
Peter X. Ma

AbstractReverse solid freeform (SFF) fabrication was used to create highly-controlled macroporous structures in nano-fibrous poly (L-lactic acid) (PLLA) scaffolds. By using a computer-aided design (CAD) program to create a negative template for the scaffold, the three-dimensional (3-D) mold was created on a 3-D printer using a wax. After the template was printed, a solution of PLLA in tetrahydrofuran (THF) was cast into the mold, and was subsequently phase separated at -70°C which gives the nano-fibrous morphology. This resulted in a 3-D nano-fibrous scaffold with a uniform fiber mesh throughout the entire matrix, and greatly increased the surface area within the scaffold. Fiber diameters in these scaffolds were 50-500 nm, similar to type I collagen, and the densities of the fiber meshes can be altered by changing the polymer concentration. To examine the scaffold's potential for tissue regeneration, MC3T3-E1 osteoblasts were seeded and cultured on the scaffolds. Results show that the osteoblasts attached and proliferated on the scaffolds. After 6 weeks in culture, bone-like tissue was evident within the nano-fibrous scaffolds. By having the ability to control the macroporous architecture, interconnectivity, orientation, and external shape of the scaffold, as well as the nanometer-scaled fibrous features in the pore walls, this SFF fabrication/phase separation technique has great potential to design and create ideal scaffolds for bone tissue engineering.


Author(s):  
Kartikeya Dixit ◽  
Niraj Sinha

Abstract Scaffolds play an essential role in bone healing by providing temporary structural support to the native bone tissue and by hosting bone cells. To this end, several biomaterials and manufacturing methods have been proposed. Among the biomaterials, bioactive glasses have attractive properties as a scaffold material for bone repair. Simultaneously, additive manufacturing (AM) techniques have attracted significant attention owing to their capability of fabricating complex and patient specific scaffolds. Accordingly, borosilicate bioactive glass (BG-B30) has been used to fabricate the scaffolds using extrusion-based AM device in this study. Pluronic F-127 was used as an ink carrier that showed suitable shear thinning behavior for fabrication. The pure BG-B30 scaffold had a compressive strength of 23.30 MPa and was reinforced further with functionalized multi-walled carbon nanotube (MWCNT-COOH) to reduce its brittleness and enhance its compressive strength. When compared to the conventional polymer foam replication technique, the combination of MWCNT-COOH reinforcement and AM resulted in an enhancement of the compressive strength by ~646% (1.05 MPa to 35.84 MPa). Further, structural analysis using micro computed tomography revealed that the scaffolds fabricated using AM had better control over strut size and pore size in addition to better network connectivity. Finally, in vitro experiments demonstrated its bioactive behavior by formation of hydroxyapatite, and the cellular studies revealed good cell viability and osteogenesis initiation. These results are promising for the fabrication of patient-specific CNT-reinforced bioactive glass porous scaffolds for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document