Development of a Bioabsorbable Glass-Reinforced-Glass Intra-Osseous Scaffold for Fracture Healing

Author(s):  
Philip Boughton ◽  
Y. Chen ◽  
C. Thompson ◽  
G. Roger ◽  
Jari Hyvarinen ◽  
...  

Intramedullary (IM) nails are routinely used to stabilize long bone fractures. They can however lead to stress shielding, pain, migration, obstruct hematopoietic tissue, become a loci for infection, and require subsequent surgical retrieval. Novel intra-osseous scaffold (IOS™) prototypes for fracture healing have been developed to function as a regenerative scaffold to enhance callous formation under mechanically stabilized conditions then resorb. Prototype fixation pins and rod systems were formed from glass-reinforced-glass. Flexion, torsion and shear tests were performed to evaluate the composite pins and rods. A modular rod design was successfully deployed and dilated while in a deformable state. When fitted and gripping the intramedullary canal then set in a rigid state. An obliquely sectioned ovine femur was used as a long bone fracture model for deployment and mechanical verification. Flexural support provided by the intramedullary scaffold was superior to multiple k-wire fixation, while the k-wire approach was more stabilizing under torsional loads. Glass reinforced glass samples were mechanically tested after soaking for up to 4 weeks in saline. Strength and modulus of the composite was reduced to approximately 25% of initial values after 2 weeks.

2005 ◽  
Vol 05 (01) ◽  
pp. 89-103 ◽  
Author(s):  
K. RAMAKRISHNA ◽  
I. SRIDHAR ◽  
S. SIVASHANKER ◽  
V. K. GANESH ◽  
D. N. GHISTA

A major concern when a fractured bone is fastened by stiff-plates to the bone on its tensile surface is excessive stress shielding of the bone. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays bone healing. Likewise, the tensile stress shielding of the healed bone underneath the plate also does not enable it to recover its tensile strength. Initially, the effect of a uniaxial load and a bending moment on the assembly of bone and plate is investigated analytically. The calculations showed that the screws near the fracture site transfers more load than the screws away from the fracture site in axial loading and it is found that less force is required when the screw is placed near to fracture site than the screw placed away from the fracture site to make the bone and plate bend with same radius of curvature when subjected to bending moment. Finally, the viability of using a stiffness graded bone-plate as a fixator is studied using finite element analysis (FEA): the stiffness-graded plate cause less stress-shielding than stainless steel plate.


Author(s):  
Brandon G. Santoni ◽  
Rohat Melik ◽  
Emre Unal ◽  
Nihan Kosku Perkgoz ◽  
Debra A. Kamstock ◽  
...  

Orthopaedic extremity injuries present a large medical and financial burden to the United States and world-wide communities [1]. Approximately six million long bone fractures are reported annually in the United States and approximately 10% of these fractures do not heal properly. Though the exact mechanism of impaired healing is poorly understood, many of these non-unions result when there is a communited condition that does not proceed through a stabilized healing pathway [2]. Currently, clinicians may monitor healing visually by radiographs, or via manual manipulation of the bone at the fracture [3]. Unfortunately, the course of aberrant fracture healing is not easily diagnosed in the early period when standard radiographic information of the fracture is not capable of discriminating the healing pathway. Manual assessment of fracture healing is also an inadequate diagnostic tool in the early stages of healing [4].


2019 ◽  
Vol 8 (7) ◽  
pp. 304-312 ◽  
Author(s):  
J. A. Nicholson ◽  
S. T. J. Tsang ◽  
T. J. MacGillivray ◽  
F. Perks ◽  
A. H. R. W. Simpson

Objectives The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion Modern ultrasound image processing has the potential to replace traditional imaging modalities in several areas of trauma practice, particularly in the early prediction of impaired fracture healing. Further understanding of the therapeutic application of ultrasound is required to understand and identify the use in promoting fracture healing. Cite this article: J. A. Nicholson, S. T. J. Tsang, T. J. MacGillivray, F. Perks, A. H. R. W. Simpson. What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019;8:304–312. DOI: 10.1302/2046-3758.87.BJR-2018-0215.R2.


2020 ◽  
Vol 21 (23) ◽  
pp. 9144
Author(s):  
Anja Garbe ◽  
Frank Graef ◽  
Jessika Appelt ◽  
Katharina Schmidt-Bleek ◽  
Denise Jahn ◽  
...  

Recent studies on insulin, leptin, osteocalcin (OCN), and bone remodeling have evoked interest in the interdependence of bone formation and energy household. Accordingly, this study attempts to investigate trauma specific hormone changes in a murine trauma model and its influence on fracture healing. Thereunto 120 female wild type (WT) and leptin-deficient mice underwent either long bone fracture (Fx), traumatic brain injury (TBI), combined trauma (Combined), or neither of it and therefore served as controls (C). Blood samples were taken weekly after trauma and analyzed for insulin and OCN concentrations. Here, WT-mice with Fx and, moreover, with combined trauma showed a greater change in posttraumatic insulin and OCN levels than mice with TBI alone. In the case of leptin-deficiency, insulin changes were still increased after bony lesion, but the posttraumatic OCN was no longer trauma specific. Four weeks after trauma, hormone levels recovered to normal/basal line level in both mouse strains. Thus, WT- and leptin-deficient mice show a trauma specific hyperinsulinaemic stress reaction leading to a reduction in OCN synthesis and release. In WT-mice, this causes a disinhibition and acceleration of fracture healing after combined trauma. In leptin-deficiency, posttraumatic OCN changes are no longer specific and fracture healing is impaired regardless of the preceding trauma.


Injury ◽  
2020 ◽  
Vol 51 (8) ◽  
pp. 1693-1695
Author(s):  
George D. Chloros ◽  
Anthony Howard ◽  
Vincenzo Giordano ◽  
Peter V. Giannoudis

2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ernest C. Chisena ◽  
Jahangir S. Rastegar ◽  
Robert S. Chisena

Endochondral fracture healing, the process in which callus bridges a fracture, can be enhanced using a brace with a deforming element. This deforming element acts to locally increase pressure at the fracture site. In this paper, we describe a bracing device, which has the capability of controlling blood flow in targeted regions of an extremity. Controlling the blood flow around a fracture site induces a mechanism that enhances fracture healing. We hypothesize that, since local oxygen tension is lowered by means of controlling the blood flow at the fracture site, fracture healing is accelerated and bony union is more likely. Using the results of several previous studies, we will show that increased mechanical pressure in the soft tissues over the fracture site enhances fracture healing.


2020 ◽  
Vol 44 (1) ◽  
pp. 43-48
Author(s):  
Ante Muljačić ◽  
Matea Majstorović-Matejić ◽  
Marko Guberina ◽  
Ognjen Živković ◽  
Renata Poljak-Guberina

Total and bone alkaline phosphatase are indicators of bone formation, a process essential in bone healing. The aim of this study was to assess the relationship of both total and bone alkaline phosphatase with the course and features of healing in surgically treated long bone fractures as compared to the callus volume. In this study, total and bone alkaline phosphatase levels and the callus volume were measured in two patients with long bone fractures. Fracture healing was rapid in one patient and slow in the other. Depending on the healing outcome, on day 7 an increase in the case of slow healing and a decrease in the case of rapid healing was noted for both total and bone alkaline phosphatase. In the case of slow healing, the callus volume was significant whereas in the case of rapid healing the callus was almost invisible on day 7. This result indicates a possible prognostic significance of aforementioned clinical biochemical and radiographic parameters in the monitoring of long bone fracture healing.


2016 ◽  
Vol 5 (4) ◽  
pp. 165-72
Author(s):  
Ghazaleh Heydarirad ◽  
Seyed Mohammad Hasan Sadeghi ◽  
Seyed Mehdi Hosseini Khameneh ◽  
Mahmood Khodadoost ◽  
Mohammad Kamalinejad ◽  
...  

Fractures, especially leg fractures, are one of the most common problems in the world, and it causes a considerable economic and social burden for patients and societies. Orthopedic surgery plays the most important role in the treatment of fractures, but it is expensive and requires anesthesia which has a variety of side effects. Besides surgery and conventional treatments, it seems that the use of natural substances as complementary therapy can be useful. In Traditional Persian Medicine (TPM) manuscripts, many diverse natural substances, especially medicinal herbs, are mentioned as useful medications for fracture healing. The aim of this study was to investigate medicinal plants and natural substances used in TPM as useful in fracture healing, by an overview of traditional knowledge as compared with new investigations. The main manuscripts of TPM, including the Canon of Medicine, Tohfat-ol-Moemenin, Exir-e–azam and Makhzan-ol-advieh, were assembled through a literature search, to select the substances used in fracture healing. Also, current evidence on related substances were studied through a search of Google Scholar and PubMed databases. In this study, eleven substances were identified and categorized into three groups: plants, animals, and minerals. The results of our study showed that the most cited substances were used due to their effects on fracture or wound healing, inflammations, and pain. This historical assessment can help in obtaining new data about natural substances for faster fracture healing, which may lead to subsequent opportunities to assess their potential medicinal use. [GMJ. 2016;5(4):165-72]


2021 ◽  
Author(s):  
Saeid Samiezadeh ◽  
Pouria Tavakkoli Avval ◽  
Zouheir Fawaz ◽  
Habiba Bougherara

Background: Intramedullary nails are the primary choice for treating long bone fractures. However, complications following nail surgery including non-union, delayed union, and fracture of the bone or the implant still exist. Reducing nail stiffness while still maintaining sufficient stability seems to be the ideal solution to overcome the above mentioned complications. Methods: In this study, a new hybrid concept for nails made of carbon fibers/ fl ax/epoxy was developed in order to reduce stress shielding. The mechanical performance of this new implant in terms of fracture stability and load sharing was assessed using a comprehensive non-linear FE model. This model considers several mechanical factors in nine fracture configurations at immediately post-operative, and in the healed bone stages. Results: Post-operative results showed that the hybrid composite nail increases the average normal force at the fracture site by 319.23 N ( P b 0.05), and the mean stress in the vicinity of fracture by 2.11 MPa ( P b 0.05) at 45% gait cycle, while only 0.33 mm and 0.39 mm ( P b 0.05) increases in the fracture opening and the fragments' shear movement were observed. The healed bone results revealed that implantation of the titanium nail caused 20.2% reduction in bone stiffness, while the composite nail lowered the stiffness by 11.8% as compared to an intact femur. Interpretation: Our results suggest that the composite nail can provide a preferred mechanical environment for healing, particularly in transverse shaft fractures. This may help bioengineers better understand the biomechanics of fracture healing, and aid in the design of effective implants.


Sign in / Sign up

Export Citation Format

Share Document