Influence of Chemical Reaction and Arrhenius Activation Energy on Hydromagnetic Non-Darcian Casson Nanofluid Flow with Second-Order Slip Condition

Author(s):  
Emmanuel Olurotimi Titiloye ◽  
Adeshina Taofeeq Adeosun ◽  
Jacob Abiodun Gbadeyan

This article investigates the combined effect of second-order velocity slip, Arrhenius activation energy and binary chemical reaction on reactive Casson nanofluid flow in a non-Darcian porous medium. The governing equations of the problem were first non-dimensionalized and later reduced to ordinary nonlinear differential equations by adopting a similarity transformation. The emerging nonlinear boundary value problem was solved by using Galerkin weighted residual method (GWRM). The obtained results were compared with those found in the literature to validate our method. The impact of pertinent parameters on the velocity component, temperature distribution and concentration profile are presented using graphs and were discussed. The computational results show that an increase in second order slip parameter significantly results to an increase in the temperature as well as nanoparticle concentration profiles, while it reduces the velocity profile.

2017 ◽  
Vol 377 ◽  
pp. 84-94 ◽  
Author(s):  
N.S. Shashikumar ◽  
M. Archana ◽  
B.C. Prasannakumara ◽  
Bijjanal Jayanna Gireesha ◽  
Oluwole Daniel Makinde

Mathematical modeling to study the effect of nonlinear thermal radiation on Casson nanofluid flow between parallel plates is established. Second order velocity slip condition is implemented at the boundary of the lower plate. An appropriate transformation is applied to alter the PDEs into ODEs and then tackled numerically by employing RKF-45. The consequence of several prevailed parameters on the Casson nanoliquid velocity components, temperature and concentration fields are portrayed graphically and deliberated in detail. Velocity component decreases near the region of lower plate while it increases along the upper plate region for magnetic and slip parameter whereas opposite behavior is obtained for the Casson parameter for the same component.


Sign in / Sign up

Export Citation Format

Share Document