Technological Possibilities of Low-Temperature Precision Grinding Process when Machining Hard and Brittle Materials

2002 ◽  
Vol 223 ◽  
pp. 149-156 ◽  
Author(s):  
B.I. Batiashvili ◽  
D.S. Butskhrikidze ◽  
G.A. Mamulashvili ◽  
R.S. Turmanidze ◽  
Karl Kromp ◽  
...  

2001 ◽  
Vol 16 (3) ◽  
pp. 341-351 ◽  
Author(s):  
A. G. Mamalis ◽  
J. Kundrák ◽  
K. Gyáni


2016 ◽  
Vol 1136 ◽  
pp. 412-417 ◽  
Author(s):  
Fei Hu Zhang ◽  
Kai Wang ◽  
Zhong De Liu ◽  
Zhao Kai Ma ◽  
Dian Rong Luan

Metal bonded diamond grinding wheels are very important for precision grinding operations of hard and brittle materials especially like ceramics or cemented carbides. But the trueing and dressing problem has affected its wide use. In this paper, a new EDD (Electrical discharge dressing) device was developed for the dressing of metal bonded diamond arc grinding wheels. The EDD experiments were carried out with the new dressing device. The influence of dressing parameters on the dressing efficiency and precision was studied. Experimental results shown that the increase of pulse period and duty period helped improve the dressing efficiency in a certain range. The higher electrical parameters could get better dressing efficiency. The detection results revealed that the error of the arc profile after EDD could reach to around 3μm. mazhaokai2014



2001 ◽  
Vol 202-203 ◽  
pp. 437-440
Author(s):  
Jia Liang Guan ◽  
J.W. Fan ◽  
C.M. Ma ◽  
Zhe Jun Yuan ◽  
Dong Ming Guo


2012 ◽  
Vol 565 ◽  
pp. 111-116
Author(s):  
Han Huang

This paper summarised our recent results on the development of grinding technologies for the fabrication of aspheric components at micro/meso scales made of cemented tungsten carbide. Based on these results, a grinding protocol was proposed for the fabrication of aspheric moulds. The protocol includes the understanding of deformation and removal mechanisms of hard and brittle materials involved in grinding, the preparation of grinding wheels, the compensation of profiling errors and the optimisation of the grinding process.



Sadhana ◽  
2003 ◽  
Vol 28 (5) ◽  
pp. 915-924 ◽  
Author(s):  
V. C. Venkatesh ◽  
S. Izman ◽  
S. Sharif ◽  
T. T. Mon ◽  
M. Konneh


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1363
Author(s):  
Yanyan Yan ◽  
Zhaoqing Zhang ◽  
Junli Liu ◽  
Haozhe Yan ◽  
Xiaoxu Wang

A large number of studies have shown that the height of a residual material is the key factor affecting the surface quality of ultra-precision grinding. However, the grinding process contains several random factors, such as the randomness of grinding particle size and the random distribution of grinding particles, which cause the complexity of the material removal process. In this study, taking the Nano-ZrO2 as an example, the removal process of surface materials in ultra-precision grinding of hard and brittle materials was analyzed by probability. A new calculation method for the height of surface residual materials in ultra-precision grinding of Nano-ZrO2 was proposed, and the prediction model of the three-dimensional roughness Sa and Sq were established by using this calculation method. The simulation and experimental results show that this calculation method can obtain the more accurate surface residual material height value which accords with the characteristics of three-dimensional roughness sampling, which provides a theoretical reference for the analysis of the material removal process and the surface quality evaluation of ultra-precision grinding of hard and brittle materials.



Sign in / Sign up

Export Citation Format

Share Document